期刊文献+

Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes

下载PDF
导出
摘要 BACKGROUND Liver injury is common in severe acute pancreatitis(SAP).Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes,which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis.Our previous study found that milk fat globule epidermal growth factor 8(MFG-E8)alleviates acinar cell damage during SAP via binding toαvβ3/5 integrins.MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy.AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux.METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50μg/kg cerulein plus lipopolysaccharide.mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAPinduced liver injury.Cilengitide,a specificαvβ3/5 integrin inhibitor,was used to investigate the possible mechanism of MFG-E8.RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice,enhanced autophagy flux in hepatocyte,and worsened the degree of ferroptosis.Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner.Mechanistically,MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells.Cilengitide abolished MFG-E8’s beneficial effects in SAP-induced liver injury.CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury.MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrinαVβ3/5.
出处 《World Journal of Gastroenterology》 SCIE CAS 2024年第7期728-741,共14页 世界胃肠病学杂志(英文版)
基金 Supported by the National Natural Science Foundation of China,No.82100685 the Scientific Research Fund of Xi’an Health Commission,No.2021yb08 Scientific Research Fund of Xi’an Central Hospital,No.2022QN07 Innovation Capability Support Plan of Xi’an Science and Technology Bureau,No.23YXYJ0097.
  • 相关文献

参考文献2

二级参考文献6

共引文献355

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部