摘要
由于光伏子阵的非线性行为和其对运行环境的依赖性,传统的保护装置可能无法诊断光伏系统低效子阵问题。为此,业内进行了大量研究来克服这一问题的出现。然而,大多数方法不仅耗时较久,还存在较大的电量损失。同时,由于需要大量数据集,还存在数据过度拟合问题,导致准确率有所欠缺。在本研究中,通过应用华为AI BOOST智能IV诊断3.0,无论是实验评估还是实际应用,相比传统的诊断方法,均取得了较为明显的效果。
Due to the nonlinear behavior of photovoltaic subarrays and their dependence on the operating environment,traditional protection devices may not be able to diagnose the inefficient subarrays of photovoltaic systems.For this reason,a lot of research has been done in the industry to overcome the emergence of this problem.However,most methods are not only time-consuming,but also have a large power loss.At the same time,due to the need for a large number of datasets,there is also the problem of data overfitting,resulting in insufficient accuracy.In this study,Huawei’s AI BOOST Intelligent IV Diagnosis 3.0 is applied,and significant results are achieved compared with traditional diagnostic methods in terms of experimental evaluation and practical application.
作者
卢阳
张宇川
陈星星
Lu Yang;Zhang Yu-chuan;Chen Xing-xing(SPIC Inner Mongolia New Energy Co.,Ltd.,Hohhot 010000,Inner Mongolia Autonomous Region,China)
出处
《科学与信息化》
2024年第4期36-38,共3页
Technology and Information
关键词
光伏发电站
光伏运维
低效子阵
智能IV诊断
photovoltaic power station
photovoltaic operation and maintenance
inefficient subarray
intelligent IV diagnosis