期刊文献+

A novel Ag/ZnO core-shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals

下载PDF
导出
摘要 The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
出处 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期366-377,共12页 绿色能源与环境(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.22176145,82172612) the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001) the Fundamental Research Funds for the Central Universities(22120210137).
  • 相关文献

参考文献2

二级参考文献32

  • 1A. Panacek, L Kvltek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V.K. Sharma T. Nevena, R. Zboril, J. Phys. Chem. B 110 (2006) 16248-16253.
  • 2A.D. Weston, L. Hood, J. Proteome Res. 3 (2004) 179-196.
  • 3M. Hannig, C. Hannig, Nat. Nanotechnol. 5 (2010) 565-569.
  • 4S.K. Sahoo, S. Parveen, J.J, Panda, Nanomed. Nanotechnol. Biol. Med. 3 (2007 20-31.
  • 5S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, 5 Mahendra, M.J. McLaughlin, J.R. Lead, Environ. Toxicol. Chem. 27 (2008) 1825-1851.
  • 6K. Kon, M. Rai,.J. Comp. Clin. Path. Res. 2 (2013) 160-174.
  • 7Z. Lu, K. Rong, J. Li, H. Yang, R. Chen, J. Mater. Sci. Mater. Med. 24 (2013) 1465-1471.
  • 8C. Khurana, A.K. Vala, N. Andhariya, O.P. Pandey, B. Chudasama, J. Biomed. Mater. Res. A 102 (2014) 3361-3368.
  • 9A4, Bone, B.E Cotman, A.E Gondikas, ICM. Newton, K.H. Harrold, R.M. Cory, J.M. Unrine, S.J. Klaine, C.W. Matson, ILT. Di Giulio, Environ. Sci. TechnoL 46 (2012) 6925-6933.
  • 10S.J. Yu, Y.G. Yin, J.E Liu, Env. Sci. Process. Impact 15 (2013) 78-92.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部