期刊文献+

VTI介质修正声学近似qP波波动方程与模拟 被引量:1

Wave equation and numerical simulation for qP wave in VTI media with modified acoustic approximation
下载PDF
导出
摘要 各向异性介质中纵横波通常耦合在一起传播,纵横波解耦是地震波传播理论研究的重要内容。经典的声学近似通过设置垂向qSV波速度V_(S0)为0来解耦qP波场,但是存在退化qSV波等问题。本研究将垂向qSV波速度V_(S0)考虑成波数k_(x)、k_(z)和各向异性参数ε、δ的函数,对声学近似进行修正,推导了VTI介质修正声学近似qP波频散关系和波动方程。VTI介质修正声学近似qP波波动方程包含椭圆项和非椭圆项两部分,因此采用混合有限差分/伪谱算法进行求解,即采用有限差分法求解椭圆项、伪谱法求解非椭圆项。频散关系分析和数值示例表明,基于修正声学近似的qP波波动方程不包含退化qSV波,是纯qP波方程,与弹性波方程模拟结果吻合较好,且具有较高精度;该方程在ε≥δ和ε<δ的VTI介质中均是稳定的,并且精度高于声学近似模拟结果。 In anisotropic media,qP and qS waves are usually coupled to propagate together.The decoupling of qP and qS waves is an important part of the theoretical study of seismic wave propagation.The classic acoustic approximation decouples the qP wavefield by setting the vertical velocity V_(S0) of qSV wave as zero,but there are problems such as degraded qSV waves.In this paper,the acoustic approximation was modified by considering the V_(S0) as a function of the wave numbers k_x,k_(z) and the anisotropy parameters ε,δ,and the dispersion relation and wave equation for qP wave in VTI media with the modified acoustic approximation were then derived.This wave equation for qP wave,containing elliptic terms and non-elliptic terms,was solved by using the hybrid finite difference/pseudo spectral method:the finite difference method for solving the elliptic terms and the pseudo spectral method for solving the non-elliptic terms.The dispersion analysis and numerical examples show that the qP wave equation with the modified acoustic approximation as a pure qP wave equation without any degenerate qSV wave is in good agreement with the simulation results of the elastic wave equation and has high accuracy.It is stable in VTI media with both ε≥δ and ε<δ,and more accurate than the simulated results with the acoustic approximation.
作者 梁锴 陈浩然 孙上饶 LIANG Kai;CHEN Haoran;SUN Shangrao(School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China)
出处 《山东科技大学学报(自然科学版)》 CAS 北大核心 2024年第1期53-60,共8页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(42030103,42074162) 山东省自然科学基金项目(ZR202111200174) 中国石油大学(华东)研究生创新基金项目(22CX04014A)。
关键词 修正声学近似 波动方程 纯qP波 混合有限差分/伪谱法 VTI介质 modified acoustic approximation wave equation pure qP wave hybrid finite-difference/pseudo-spectral method VTI media
  • 相关文献

参考文献4

二级参考文献33

  • 1吴国忱,梁锴.VTI介质频率-空间域准P波正演模拟[J].石油地球物理勘探,2005,40(5):535-545. 被引量:40
  • 2轩义华,何樵登,林炎,揣媛媛.双相各向异性介质正演研究[J].石油天然气学报,2006,28(6):69-72. 被引量:1
  • 3吴国忱,梁锴.VTI介质qP波方程高精度有限差分算子[J].地球物理学进展,2007,22(3):896-904. 被引量:20
  • 4CRAMPIN S. The dispersion of surface waves in multilayered anisotropic media[J]. Geophysical Journal International, 1970, 21 (3) : 387-402.
  • 5GASSMANN F. Elastic waves through a packing of spheres[J].Geophysics, 1951,16(4) :673-685.
  • 6BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range[J]. The Acous- tical Society of America, 1956,28(2) : 168-178.
  • 7BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ high-frequency range[J]. The A-coustical Society of America, 1956,28(2) : 179-191.
  • 8BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962,33 (4) ~ 1482-1498.
  • 9BIOT M A. Generalized theory of acoustic propagation in porous dissipative media[J]. The Acoustical Society of America, 1962,34(9A) : 1254-1264.
  • 10DVORKIN J,NUR A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms[J]. Geophysics, 1993,58(4) : 524-533.

共引文献101

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部