摘要
Based on the characteristics of high-end products,crowd-sourcing user stories can be seen as an effective means of gathering requirements,involving a large user base and generating a substantial amount of unstructured feedback.The key challenge lies in transforming abstract user needs into specific ones,requiring integration and analysis.Therefore,we propose a topic mining-based approach to categorize,summarize,and rank product requirements from user stories.Specifically,after determining the number of story categories based on py LDAvis,we initially classify“I want to”phrases within user stories.Subsequently,classic topic models are applied to each category to generate their names,defining each post-classification user story category as a requirement.Furthermore,a weighted ranking function is devised to calculate the importance of each requirement.Finally,we validate the effectiveness and feasibility of the proposed method using 2966 crowd-sourced user stories related to smart home systems.
基金
supported by the National Natural Science Foundation of China(71690233,71901214)。