期刊文献+

Chromatin condensation but not DNA integrity of pig sperm is greater in the sperm-rich fraction

下载PDF
导出
摘要 Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.
出处 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期171-181,共11页 畜牧与生物技术杂志(英文版)
基金 This research was supported by the European Union’s Horizon 2020 research and innovation scheme under the Marie Skłodowska-Curie grant agreement No.801342(Tecniospring INDUSTRY Grant:TECSPR-19-1-0003) the Ministry of Science and Innovation,Spain(Grants:PID2020-113320RB-I00,PID2020-113493RB-I00,RYC2021-034546-I and RYC2021-034764-I) the Catalan Agency for Management of University and Research Grants,Regional Government of Catalonia,Spain(Grants:2017-SGR-1229 and 2021-SGR-00900) the Seneca Foundation,Regional Government of Murcia,Spain(Grant:21935/PI/22) La Marato de TV3 Foundation(Grant:214/857-202039) and the Catalan Institution for Research and Advanced Studies(ICREA).
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部