摘要
围岩可掘性分级以及识别研究对隧道掘进机(TBM)高效率施工及智能化控制意义重大。依托南水北调安阳市西部调水工程TBM施工实际数据,利用掘进性能综合指标单位贯入度推力(FPI)、单位贯入度扭矩(TPI)建立了小断面土石组合地质条件下TBM施工围岩可掘性分级标准;提出了PCA-RF模型对围岩可掘性分级进行识别,并与BP、SVR和RF模型进行了比较讨论。结果表明:①建立的小断面土石组合围岩TBM施工可掘性分级标准是适用的,克服了土石组合围岩下传统围岩分类方法的局限性;②小断面土石组合围岩TBM施工可掘性分级PCA-RF识别模型的识别准确率达到了98.3%,高于BP、SVR和RF模型,可以满足工程施工需要。
The efficient construction and intelligent control of TBM heavily rely on the classification and real-time identification of surrounding rock excavability.To address this,we establish a classification standard for surrounding rock excavability in TBM construction under geological conditions characterized by small sections and soil-rock combinations based on actual data(penetration thrust and torque per unit penetration)from the Anyang Western Water Diversion Project.Moreover,we introduce the PCA-RF model for real-time identification and prediction of surrounding rock excavability,and then compared the results with those of BP,SVR,and RF models.Our research yields the following conclusions:1)The classification standard for surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations proves to be applicable.This standard resolves the limitations of traditional methods for classifying surrounding rock in soil-rock composite environments.2)The PCA-RF model demonstrates an identification and prediction accuracy of 98.3%for the surrounding rock excavability in TBM construction under the geological conditions of small sections and soil-rock combinations.This accuracy surpasses that of the BP,SVR,and RF models and fulfills the demands of engineering construction.
作者
杨耀红
刘德福
张智晓
韩兴忠
孙小虎
YANG Yao-hong;LIU De-fu;ZHANG Zhi-xiao;HAN Xing-zhong;SUN Xiao-hu(School of Water Conservancy,North China University of Water Resources and Electric Power,Zhengzhou 450046,China;Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin,Zhengzhou 450046,China;Zhongzhou Water Affairs Holding Co.,Ltd.,Zhengzhou 450000,China;Bei Fang Investigation Design&Research Co.,Ltd.,Tianjin300000,China)
出处
《长江科学院院报》
CSCD
北大核心
2024年第3期79-87,共9页
Journal of Changjiang River Scientific Research Institute
基金
国家自然科学基金重点项目(51679089)
河南省学科创新引智基地项目“智慧水利”(GXJD004)。