摘要
研究了二维区域上线弹性问题的低阶虚拟元方法.用不连续的分段线性向量值函数增扩低阶协调虚拟元空间来构造离散空间,设计了一种离散方法,证明了能量范数下的误差是最优收敛的,和Lamé常数λ无关.最后给出数值算例验证了理论结果.
In this paper,we propose a low-order virtual element method for the linear elasticity problem in two dimensions.We construct a discrete space by enriching the low order conforming virtual element space with discontinuous piecewise linear vector-valued functions.A corresponding discrete problem is introduced.It is proved that the error estimation is optimal with respect to the energy norm,and the hidden constant is independent of the Laméconstantλ.Finally,some numerical examples are given to verify the theoretical results.
作者
王晓涵
王锋
Wang Xiaohan;Wang Feng(School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
出处
《南京师大学报(自然科学版)》
CAS
北大核心
2024年第1期1-6,共6页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金项目(12071227).
关键词
线弹性问题
低阶虚拟元方法
闭锁现象
linear elasticity problem
low-order virtual element method
locking phenomenon