摘要
针对RRT^(*)算法在复杂环境路径规划中存在的盲目搜索、冗余节点及路径较长等问题,提出一种融合树扩展策略和采样策略的改进RRT^(*)算法(AF-RRT^(*))。通过创造父节点改进RRT^(*)扩展树的结构,缩小路径长度;引入自适应探索,增加采样导向的选择性,减少路径搜索时间,同时不会陷入局部最优陷阱;通过动态步长,减少冗余节点。仿真结果表明,AF-RRT^(*)算法在多种环境下,路径获取效率和路径质量均优于RRT^(*)和F-RRT^(*)。消融实验验证了AF-RRT^(*)算法和算法各功能模块的有效性。
The optimal rapidly-exploring random tree(RRT^(*))algorithm is usually used in complex environments for robot path planning.However,it has issues of blind search,redundant nodes and long path length.An improved RRT^(*)algorithm(AF-RRT^(*))that combined tree expansion strategy with sampling strategy was proposed.To reduce the path length,parent node creation strategy was used to improve the structure of the RRT^(*)extension tree.The adaptive exploration strategy was introduced to increase the sampling-oriented selectivity and reduce the path search time without falling into the local optimum trap.The dynamic step size was utilized to decrease the redundant nodes.Simulation results show that AF-RRT^(*)algorithm is better than RRT^(*)and F-RRT^(*)in path acquisition efficiency and path quality.The ablation experiment verifies the effectiveness of AF-RRT^(*)algorithm and its function modules.
作者
梁永豪
陈秋莲
王成栋
LIANG Yong-hao;CHEN Qiu-lian;WANG Cheng-dong(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China)
出处
《计算机工程与设计》
北大核心
2024年第3期748-754,共7页
Computer Engineering and Design
基金
国家自然科学基金项目(71371058)
广西自然科学基金项目(2020GXNSFAA159090)
广西大学基金项目(XBZ200371)。
关键词
路径规划
快速扩展随机树
创造父节点
自适应探索
动态步长
树扩展策略
采样策略
path planning
optimal rapidly-exploring random tree(RRT^(*))
parent node creation
adaptive exploration
dynamic step size
tree expansion strategy
sampling strategy