摘要
离心通风机是气流染色系统的核心部件,其性能优劣直接决定气流染色系统的染色质量和能耗水平。本文针对某气流染色机用离心通风机的气动性能和几何结构开展优化设计,以风机全压PtF和全压效率ηtF最大化为优化目标,利用基于人工神经网络构建的代理模型,结合带精英策略的遗传算法对离心通风机叶轮开展优化设计,同时基于叶轮与蜗壳耦合整机气动匹配条件下对蜗壳几何结构进行优化设计。试验结果表明,优化设计的离心通风机结构更紧凑,其全压PtF提升约500Pa,其全压效率ηtF提升约5%。
Centrifugal fan is the key components of air flow dyeing machine system,which directly determines the dyeing quality and energy consumption level of the airflow dyeing system.In order to optimize the geometric structure and improve aerodynamic performance of centrifugal fans aim in air flow dyeing machine,taking the maximized total pressure PtF and total pressure efficiencyηtF of the fan as the optimization aim,a surrogate model based on artificial neural networks combined with genetic algorithm with elite strategy is used to optimize the design of the centrifugal fan impeller.The volute is optimized based on the aerodynamic matching conditions of the impeller and volute coupling.The experimental results indicate that:the optimized design of the centrifugal fan with a more compact structure,and its total pressure and the total pressure efficiency increase about 500Pa and 5%respectively.
作者
吕晓峰
张勇
闻苏平
王志恒
国成
于家懿
Xiao-feng Lv;Yong Zhang;Su-ping Wen;Zhi-heng Wang;Cheng Guo;Jia-yi Yu(Shengu Group Co.,Ltd.;School of Energy and Power Engineering,Xi'an Jiaotong University)
出处
《风机技术》
2024年第1期30-37,共8页
Chinese Journal of Turbomachinery
基金
国家自然科学基金项目资助(52176044)。
关键词
离心通风机
优化设计
性能试验
Centrifugal Fan
Optimization Design
Performance Experiment