期刊文献+

具p-双调和算子的非局部椭圆方程Navier边值问题的广义解

Generalized Solutions to Nonlocal Elliptic Equations Navier Boundary Value Problems with p-Biharmonic Operators
下载PDF
导出
摘要 利用变分方法和相应的临界点定理研究一类具有p-双调和算子的非局部椭圆方程Navier边值问题,在非线性项满足超线性条件时,得到了两个非平凡广义解的存在性定理. By using variational methods and corresponding critical points theorems,we investigated a class of nonlocal elliptic equations Navier boundary value problems with p-biharmonic operators.We obtained two existence theorems for nontrivial generalized solutions when nonlinear terms satisfied super-linear conditions.
作者 刘健 赵增勤 LIU Jian;ZHAO Zengqin(School of Statistics and Mathematics,Shandong University of Finance and Economics,Jinan 250014,China;School of Mathematical Sciences,Qufu Normal University,Qufu 273165,Shandong Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期205-210,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11571197) 山东省自然科学基金(批准号:ZR2021MA070)。
关键词 非局部椭圆方程 Navier边值问题 p-双调和算子 变分方法 广义解 nonlocal elliptic equation Navier boundary value problem p-biharmonic operator variational method generalized solution
  • 相关文献

参考文献4

二级参考文献12

  • 1Liu J., Zhao Z. Q., An application of variational methods to second order impulsive differential equation with derivative dependence, Electron. J. Differ. Equ., 2014, 2014(62):1-13.
  • 2Nieto J. J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
  • 3Nieto J. J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
  • 4Qian A., Li C., Infinitely many solutions for a Robin boundary value problem, Int. J. Differ. Equ., 2010, 2010:1-9, Article ID 548702.
  • 5Rabinowitz P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI. 1986.
  • 6Schechter M., A variation of the mountain pass lemma and applications, J. Lond. Math. Soc., Second Series, 1991, 44:491-502.
  • 7Tian Y., Ge W. G., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc., 2008, 51:509-527.
  • 8Willem M., Minimax Theorems, Birkh?user, Boston, 1996.
  • 9Xiao J., Nieto J. J., Variational approach to some damped Dirichlet nonlinear impulsive differential equations, J. Franklin. Inst., 2011, 348:369-377.
  • 10Ye Y., Tang C. L., Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 2012, 394:841-854.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部