期刊文献+

一类分数阶q-差分方程广义反周期边值问题

Generalized Anti-periodic Boundary Value Problem for a Class of Fractional q-Difference Equations
下载PDF
导出
摘要 考虑一类非线性Caputo型分数阶q-差分方程的广义反周期边值问题,用Banach不动点定理给出该广义反周期边值问题解的存在唯一性结果,并给出一个应用实例. We considered the generalized anti-periodic boundary value problem for a class of nonlinear Caputo fractional q-difference equations,gave the existence and uniqueness results of solutions for the generalized anti-periodic boundary value problem by using the Banach fixed point theorem,and gave an application example.
作者 孟鑫 国佳 MENG Xin;GUO Jia(College of Mathematics and Computer,Jilin Normal University,Siping 136000,Jilin Province,China;Library of Jilin Normal University,Siping 136000,Jilin Province,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期237-242,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971084)。
关键词 Caputo分数阶q-导数 分数阶q-差分方程 广义反周期边值问题 BANACH不动点定理 Caputo fractional q-derivative fractional q-difference equation generalized anti-periodic boundary value problem Banach fixed point theorem
  • 相关文献

参考文献1

二级参考文献10

  • 1Jackson F H. ^-Difference Equations [J]. Amer J Math, 1910,32(4) : 305-314.
  • 2Al-Salam W A. Some Fractional Integrals and Derivatives [J]. Proc Edinb Math Soc, 1966/1967,15(2) : 135-140.
  • 3Agarwal R P. Certain Fractional -Integrals and Derivatives [J], Proc Cambridge Philos Soc, 1969, 66 : 365-370.
  • 4YANG Wengui. Positive Solutions for Boundary Value Problems Involving Nonlinear Frational g-DifferenceEquations [J]. Differ Equ Appl, 2013,5(2) ; 205-219.
  • 5ZHAO Yulin,CHEN Haibo,ZHANG Qiming. Existence and Multiplicity of Positive Solutions for NonhomogeneousBoundary Value Problems with Fractional y-Derivative [J]. Bound Value Probl. 2013, 2013 : 103.
  • 6ZHAO Yulin, YE Guobing, CHEN Haibo. Multiple Positive Solutions of a Singular Semipositone IntegralBoundary Value Problem for Fractional ^-Derivatives Equation [J/OL]. Abstr Appl Anal, 2013. http: dx. doi.org/10. 1155/2013/643571.
  • 7Ferreira RAC. Nontrivial Solutions for Fractional g-Difference Boundary Value Problems [J]. Electron J QualTheory Differ Equ, 2010,70( 10) : 1-10.
  • 8Ahmad B,Nieto j J. Anti-periodic Fractional Boundary Value Problems with Nonlinear Term Depending on LowOrder Derivative [J]. Fractional Calculus and Applied Analysis, 2012, 15(3) : 451-462.
  • 9WANG Fang,LIU Zhenhai. Anti-periodic Fractional Boundary Value Problems for Nonlinear DifferentialEquations of Fractional Order [J], Adv Differ Equ, 2012,2012 : 116.
  • 10Smart D R. Fixed Point Theorems [M]. Cambridge: Cambridge University Press. 1980.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部