期刊文献+

基于LightGBM的智能可穿戴设备用户行为预测

Predicting User Behavior Based on LightGBM for Smart Wearable Devices
下载PDF
导出
摘要 智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行为的预测表现优异,对此文中的研究结果也得到验证。 The large volume of data generated by smart wearable devices is a valuable digital resource for humanity.Using open datasets and mainstream data analysis tools,such as the PyCaret module for rapid model development,helps people conduct data mining without being bogged down by details.As a commonly used tool among Kaggle competition enthusiasts,LightGBM demonstrates excellent performance in predicting user behavior,and this has been validated by the research results presented in this paper.
作者 肖新元 XIAO Xinyuan(Jiangxi Vocational Collge of Mechanical&Electrical Technology,Nanchang 330013,China)
出处 《移动信息》 2024年第2期200-202,共3页 MOBILE INFORMATION
基金 江西省教育厅科学技术研究项目:基于人工智能的健康监测与预警系统的研究(GJJ214206)。
关键词 GBDT LightGBM PyCaret 机器学习 Gradient Boosting Decision Tree Light Gradient Boosting Machine PyCaret Machine learning
  • 相关文献

参考文献6

二级参考文献55

  • 1程彦钧.美国新近研发的医疗保健生命衫[J].电子技术(上海),2006,33(1):72-77. 被引量:1
  • 2Gatzoulis L, Iakovidis I. Wearable and portable eheahh systems. Technological issues and opportunities for personalized care[J]. IEEE Eng Med Biol Mag, 2007, 26(5): 51-56.
  • 3Appelboom G, Camacho E, Abraham M, et ol. Smart wearable body sensors for patient self-assessment and monitoring [J]. Arch Public Health, 2014, 72(1): 28-28.
  • 4Axisa F, Schmitt PM, Gehin C, et al. Flexible technologies and s- mart clothing for citizen medicine, home healtheare and disease prevention[J]. IEEE Trans Inf Teehnol Biomed, 2005, 9(3): 325- 336.
  • 5Pandian PS, Mohanavelu K, Safeer KP, et al. Smart vest: wear- able multi-parameter remote physiological monitoring system [J]. Med Eng Phys, 2008, 30(4): 466-477.
  • 6Rutherford JJ. Wearable technology health-care solutions for a growing global population[j]. IEEE Eng Med Biol Mag, 2010, 29 (3): 19-22.
  • 7Saravanakumar B, Soyoon S, Kim SJ. Self-powered pH sensor b- ased on a flexible organic-inorganic hybrid composite nanogen- erator [J]. ACS Appl Mater Interfaces, 2014, 6 (16): 13716- 13723.
  • 8Malhi K, Mukhopadhyay SC, Schnepper J, et d. A zigbee-based wearable physiological parameters monitoring system[J]. IEEE Sensors Journal, 2012, 12(3): 423-430.
  • 9Redmond SJ, Lovell NH, Yang GZ, et al. What does big data me- an for wearable sensor systems? Contribution of the IMIA Wear- able Sensors in Heahhcare WG[J]. Yearb Med Inform, 2014, 9: 135-142.
  • 10Fortino G, Parisi D, Pirrone V, et al. BodyCloud: A SaaS appro- ach for community body sensor networks [J]. Future Generation Computer Systems, 2014, 35: 62-79.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部