摘要
智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行为的预测表现优异,对此文中的研究结果也得到验证。
The large volume of data generated by smart wearable devices is a valuable digital resource for humanity.Using open datasets and mainstream data analysis tools,such as the PyCaret module for rapid model development,helps people conduct data mining without being bogged down by details.As a commonly used tool among Kaggle competition enthusiasts,LightGBM demonstrates excellent performance in predicting user behavior,and this has been validated by the research results presented in this paper.
作者
肖新元
XIAO Xinyuan(Jiangxi Vocational Collge of Mechanical&Electrical Technology,Nanchang 330013,China)
出处
《移动信息》
2024年第2期200-202,共3页
MOBILE INFORMATION
基金
江西省教育厅科学技术研究项目:基于人工智能的健康监测与预警系统的研究(GJJ214206)。
关键词
GBDT
LightGBM
PyCaret
机器学习
Gradient Boosting Decision Tree
Light Gradient Boosting Machine
PyCaret
Machine learning