期刊文献+

Electric-controlled pressure relief valve for enhanced safety in liquid-cooled lithium-ion battery packs

下载PDF
导出
摘要 The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期98-109,I0004,共13页 能源化学(英文版)
基金 sponsored by the Science and Technology Program of State Grid Corporation of China(4000-202355090A-1-1ZN)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部