摘要
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
作者
高雅
毛井
吴传喜
Ya GAO;Jing MAO;Chuanxi WU(Faculty of Mathematics and Statistics,Key Laboratory of Applied Mathematics of Hubei Province,Hubei University,Wuhan,430062,China)
基金
supported in part by the NSFC(11801496,11926352)
the Fok Ying-Tung Education Foundation(China)
the Hubei Key Laboratory of Applied Mathematics(Hubei University).