期刊文献+

MAXIMAL FUNCTION CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BOTH NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING GAUSSIAN ESTIMATES AND BALL QUASI-BANACH FUNCTION SPACES

下载PDF
导出
摘要 Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
作者 林孝盛 杨大春 杨四辈 袁文 Xiaosheng LIN;Dachun YANG;Sibei YANG;Wen YUAN(Laboratory of Mathematics and Complex Systems(Ministry of Education of China),School of Mathematical Sciences,Beijing Normal University,Beijing,100875,China;School of Mathematics and Statistics,Gansu Key Laboratory of Applied Mathematics and Complex Systems,Lanzhou University,Lanzhou,730000,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期484-514,共31页 数学物理学报(B辑英文版)
基金 supported by the National Key Research and Development Program of China(2020YFA0712900) the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431) the Key Project of Gansu Provincial National Science Foundation(23JRRA1022) the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18) the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
  • 相关文献

二级参考文献24

  • 1Long Huang,Dachun Yang.On Function Spaces with Mixed Norms—A Survey[J].Journal of Mathematical Study,2021,54(3):262-336. 被引量:4
  • 2Loukas GRAFAKOS.Maximal function characterizations of Hardy spaces on RD-spaces and their applications[J].Science China Mathematics,2008,51(12):2253-2284. 被引量:12
  • 3[1]Sjolin P. Lp estimate for strongly singular convolution operators in Rn. Ark. Math., 1976, 14: 59-64.
  • 4[2]Fefferman C. Inequality for strongly singular convolution operators. Acta Math., 1970, 124: 9-36.
  • 5[3]Fefferman C. and Stein E. M. Hp spaces of several variables. Acta Math., 1972, 129: 137-193.
  • 6[4]Chanillo S. Weighted norm inequality for strongly singular convolution operators. Trans. Amer. Math. Soc., 1984, 281: 77-107.
  • 7[5]Alvarez J., Bagay R. J., Kurtz D. S. et al. Weighted estimates for commutators of linear operators. Studia Math., 1993, 104(2): 195-209.
  • 8[6]Zygmund A. Trigonometric Series, 2nd ed. London: Cambridge Univ. Press, 1997.
  • 9[7]Cohen J. and Gossenlin J. A BMO estimate for multilinear singular integrals. Illinois J. Math., 1986, 30: 445-464.
  • 10[8]Hu Y. On multilinear fractional integrals. Approximation Theory and Its Applications, 1985, 3(1.1): 33-51.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部