期刊文献+

基于深度学习的牛脸识别系统设计

Design of cattle face recognition system based on deep learning
下载PDF
导出
摘要 为了提高畜牧保险理赔行业中牛只身份识别准确率,试验建立了基于计算机视觉提取牛脸特征的牛只身份识别系统,即使用SOLOv2实例分割模型提取牛脸前景图像,结合FaceNet提取牛脸特征;基于Tornado Web和TF Serving框架进行实例分割模型和牛脸特征提取模型的部署,完成牛脸身份识别系统的搭建,并制作了手机APP,最后对添加SOLOv2牛脸身份识别模型的准确率和验证率进行了验证。结果表明:添加了SOLOv2模型的牛脸身份识别准确率达到了98.063%,验证率达到了92.451%,与未添加SOLOv2模型相比,准确率提高了0.270百分点,验证率提高了6.275百分点。说明添加SOLOv2实例分割模型能提升牛脸身份识别的准确率和验证率。 In order to improve the accuracy of cattle identity recognition in the claims of livestock insurance industry,a cattle identity recognition system based on the extraction of cattle face features by computer vision was established,which extracted the foreground image of cattle face using the SOLOv2 instance segmentation model and the features of cattle face by FaceNet.Based on Tornado Web and TF Serving framework,the case segmentation model and cow face feature extraction model were deployed to complete the establishment of a cow face identity recognition system,and a mobile APP was developed,and the accuracy and velidation rate of adding the SOLOv2 cow face identity recognition model was verified.The results showed that the accuracy rate of cow face identification with SOLOv2 model reached 98.063%,and the validation rate was 92.451%.Compared with the model without SOLOv2,its accuracy rate was improved by 0.270 percentage points and its verification rate was improved by 6.275%.The results indicated that adding SOLOv2 instance segmentation model could improve the accuracy and validation rate of cow face identity recognition.
作者 叶孟珂 李宝山 杨梅 李琦 YE Mengke;LI Baoshan;YANG Mei;LI Qi(College of Information Engineering,Inner Mongolia University of Science&Technology,Baotou 014010,China;Engineering and Training Center,Inner Mongolia University of Science&Technology,Baotou 014010,China)
出处 《黑龙江畜牧兽医》 CAS 北大核心 2024年第4期43-48,共6页 Heilongjiang Animal Science And veterinary Medicine
基金 包头稀土高新区创建呼包鄂国家自主创新示范区和稀土高新区“提质进位”项目“基于人工智能大数据技术在现代畜牧业中的应用研发与示范”(XM2021BT12)。
关键词 牛脸识别 牛只身份识别 SOLOv2实例分割模型 深度学习 FaceNet特征提取模型 特征匹配 cattle face recognition cattle identification SOLOv2 instance segmentation model deep learning FaceNet feature extraction model feature matching
  • 相关文献

参考文献5

二级参考文献55

  • 1侯云舒,付中华,张艳宁,赵荣椿.基于改进ASM的人脸特征点提取[J].计算机应用研究,2006,23(11):255-257. 被引量:8
  • 2张志刚,周明全,耿国华.人脸关键特征点自动标定研究[J].计算机工程与应用,2007,43(21):197-198. 被引量:10
  • 3熊盛武,宗欣露,朱国锋.改进的基于AdaBoost算法的人脸检测方法[J].计算机应用研究,2007,24(11):298-300. 被引量:14
  • 4CSURKA G, DANCE C R, FAN L, et al. Visual categorization with bags of keypoints [ EB/OL]. [2015-11-06]. http://www, cs. haifa, ac. il/0 rita/vision_lab_course/2007/Project3_files/csurka_ dance bags_keypoints, pdf.
  • 5WU L, HOI S C H, YU N. Semantics-preserving bag-of-words mod- els and applications [ J]. IEEE Transactions on Image Processing, 2010, 19(7) : 1908 - 1920.
  • 6UIJLINGS J R R, SMEULDERS A W M, SCHA R J H. Real-time visual concept classification [ J]. IEEE Transactions on Multimedia, 2010, 12(7): 665-681.
  • 7ZHENG Z, ZHANG Y, YAN L. Global and local exploitation for saliency using bag-of-words [ J]. IET Computer Vision, 2014, 8 (4) : 299 - 304.
  • 8YU J, JEON M, PEDRYCZ W. Weighted feature trajectories and concatenated bag-of-features for action recognition [ J]. Neurocom- puting, 2014, 131:200-207.
  • 9ANTHIMOPOULOS M M, GIANOLA L, SCARNATO L, et al. A food recognition system for diabetic patients based on an optimized bag-of-features model [ J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(4) : 1261 - 1271.
  • 10SHEN L, LIN J, WU S, et al. HEp-2 image classification using in- tensity order pooling based features and bag of words [ J]. Pattern Recognition, 2014, 47(7) : 2419 - 2427.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部