期刊文献+

一类高维齐次Moran集的Hausdorff维数与上盒维数

Hausdorff Dimension and Upper Box Dimension of A Class of High-dimensional Homogeneous Moran Sets
下载PDF
导出
摘要 本文构造一类特殊的高维齐次Moran集:{m^(d)_(k)}型齐次Moran集,并得到了满足一定条件的这类集合的Hausdorff维数与上盒维数的表达式. In this paper,we construct a special class of high-dimensional homogeneous Moran sets called{m^(d)_(k)}type homogeneous Moran sets and obtain the Hausdorff dimension and upper box dimension of the sets satisfying some conditions.
作者 安成帅 李俊 李彦哲 AN Chengshuai;LI Jun;LI Yanzhe(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China)
出处 《应用数学》 北大核心 2024年第2期456-465,共10页 Mathematica Applicata
基金 国家自然科学基金(11901121) 广西自然科学基金(2020GXNSFBA297040)。
关键词 {m^(d)_(k)}型齐次Moran集 HAUSDORFF维数 上盒维数 {m^(d)_(k)}type homogeneous Moran set Hausdorff dimension Upper box dimension
  • 相关文献

参考文献5

二级参考文献20

  • 1Dejun Feng,Zhiying Wen,Jun Wu.Some dimensional results for homogeneous Moran sets[J]. Science in China Series A: Mathematics . 1997 (5)
  • 2Yakov Pesin,Howard Weiss.On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle Conjecture[J]. Communications in Mathematical Physics . 1996 (1)
  • 3Moran,P.A.Additive functions of intervals and Hausdorff measure,Proc.Camb. Phil.Soc . 1946
  • 4Hua Su,Li Wen-Xia.Packing dimension of generalized Moran sets,Progr. Natur.Sci . 1996
  • 5Marion,J.Mesures do Hausdorff d’un fractals similitude interne,Ann.Sci.Math. Quebec . 1986
  • 6Feng De-Jun,Rao Hui,Wu Jun.The net measure properties for symmetric Cantor sets and their applications,Progr. Natur.Sci . 1997
  • 7Feng Dejun.Some problems in fractal geometry,Ph. . 1997
  • 8Hutchinson,J.E.Fractals and self-similarity,Indiana Univ. Mathematica Japonica . 1981
  • 9McMullen,C.The Hausdorff dimension of general Siepinski carpets,Nogaya Math. J . 1984
  • 10Dejun Feng,Zhiying Wen,Jun Wu.Some dimensional results for homogeneous Moran sets[J].Science in China Series A: Mathematics.1997(5)

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部