摘要
在单相多铁材料中,利用电场代替磁场来可逆控制磁性这一手段是实现下一代高密度、低功耗磁电多功能器件的理想方法。然而,目前所发现的单相多铁材料大多数都表现出了弱的室温铁电性、铁磁性或者低于室温的磁电工作温度,这严重限制了其在实际生产中的应用。近年来的研究发现,具有强磁电(ME)耦合的第Ⅱ类室温单相多铁Ga_(2-x)Fe_(x)O_(3),其剩余铁电极化强度(Pr)和饱和磁化强度(Ms)在最优的条件下分别可以达到25μC/cm^(2)和1.2μB/f.u.,因而是一种极有可能同时解决上述问题的新型替代材料。首先介绍了单相多铁材料的研究现状以及潜在的应用;然后总结了Ga_(2-x)Fe_(x)O_(3)材料单相多铁性和ME耦合效应的研究历程;最后,围绕Ga_(2-x)Fe_(x)O_(3)未来面临的关键科学问题和挑战进行了详细讨论。
Regarding single-phase multiferroic materials,using an electric field as a reversible means of magnetism control rather than a magnetic field would be an ideal method to realize the next generation of low-power,high-density,and multifunctional magnetoelectric(ME)devices.Nevertheless,the majority of these currently identified materials reveal weak room-temperature(RT)ferroelectricity,ferromagnetism,or ME operational temperatures below room temperature,which severely limit their practical applications in production.Recent research has found that the residual ferroelectric polarization(Pr)strength and saturation magnetization(Ms)intensity of the type-Ⅱsingle-phase multiferroic Ga_(2-x)Fe_(x)O_(3) with strong(ME)coupling can reach 25μC/cm^(2) and 1.2μB/f.u.,respectively,under optimal conditions.Therefore,it is a new kind of alternative material that has great potential to solve the above problems simultaneously.This review first introduces the research status and potential applications of single-phase multiferroic materials.Subsequently,it provides a comprehensive summary of the research progress on the single-phase multiferroicity and ME coupling effects of Ga_(2-x)Fe_(x)O_(3) materials.Finally,a detailed discussion is conducted regarding the key scientific questions and challenges that Ga_(2-x)Fe_(x)O_(3) is likely to face in the future.
作者
张军
马建春
薛武红
ZHANG Jun;MA Jian-chun;XUE Wu-hong(Department of Chemistry&Chemical Engineering,Lyuliang University,Lyuliang 033001,China;Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education,Shanxi Normal University,Taiyuan 030006,China)
出处
《中国陶瓷》
CAS
CSCD
北大核心
2024年第3期1-11,共11页
China Ceramics
基金
国家自然科学基金面上项目(12174237)
山西省自然科学基金面上项目(202203021211335)
先进永磁材料与技术省部共建协同创新中心项目(2022-05)。