期刊文献+

基于水平集带方法的柔顺机构拓扑优化研究

Research on Topology Optimization of Compliant Mechanisms Based on Level Set Band Method
下载PDF
导出
摘要 水平集方法在拓扑优化问题中采用隐式函数的零水平集描述结构边界,由于可以方便的表达结构拓扑变化并使结构边界保持清晰和光滑的特性,水平集方法很快成为拓扑优化领域的重要方法之一。但是由于水平集方法在优化过程中存在拓扑变化的不连续性,容易出现数值不稳定、初始设计依赖性等问题。近年来水平集带方法的提出可以有效改善这一现象,成为提升水平集方法拓扑表达能力的重要手段。本文将水平集带引入到参数化水平集拓扑优化方法中,并对其在柔顺机构优化设计问题中的应用开展研究。水平集带方法在水平集函数的零水平集附近引入水平集带区域,采用水平集函数插值可以得到带宽范围内[0,1]区间连续分布的材料密度,并在优化过程中通过逐渐减小水平集带的宽度使带宽范围内的材料密度逐渐收敛至0-1分布。该方法结合了变密度法的优势,使优化过程中材料密度变化保持连续,可以提升参数化水平集方法的稳定性,得到更优的目标函数值,并有效改善水平集方法的初始设计依赖性问题。本文通过多个柔顺机构的拓扑优化算例从不同初始设计、不规则设计域及几何非线性等多方面分析和验证了该方法的有效性,计算结果表明该方法对面向实际工程的复杂设计问题具有较好的适用性。 The level set method uses a zero level set of the implicit level set function to describe the structure boundary in topology optimization problems.Since it can conveniently express structural topological changes and keep the structure boundary clear and smooth,the level set method has quickly become one of the important methods in the field of topology optimization.However,due to the discontinuity of topological changes during the optimization process,the level set method is prone to facing problems such as numerical instability and initial design dependence.In recent years,the level set band method has been proposed to effectively improve this phenomenon and has become an important means to improve the topological expression ability of the level set methods.This paper introduced the level set band into the parameterized level set-based topology optimization methods,and studied its application in compliant mechanism optimization design problems.The level set band method introduces a level set band area near the zero level set of the level set function.The level set function interpolation can be used to obtain the material density continuously distributed in the[0,1]interval within the bandwidth range.During the optimization process,the material density within the bandwidth range can gradually converge to a 0-1 distribution by gradually reducing the of the level set bandwidth.This method combines the advantages of the variable density method to maintain continuous material density changes during the optimization process,which can improve the stability of the parameterized level set method,obtain better objective function values,and effectively evaluate the initial design dependence of the level set method.This paper verified the effectiveness of the proposed method by studying various compliant mechanism optimization examples from the aspects of different initial designs,irregular design domain,geometric nonlinearity,etc.The optimization results show that the proposed method has good applicability for complex design problems in practical engineering.
作者 魏鹏 何磊 许伟鹏 陈起 刘杰 龙凯 WEI Peng;HE Lei;XU Weipeng;CHEN Qi;LIU Jie;LONG Kai(School of Civil Engineering and Transportation/State Key Laboratory of Subtropical Building and Urban Science,South China University of Technology,Guangzhou 510640,Guangdong,China;School of Mechanical and Electrical Engineering,Guang-dong Polytechnic Normal University,Guangzhou 510665,Guangdong,China;School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,Hebei,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期93-101,共9页 Journal of South China University of Technology(Natural Science Edition)
基金 国家重点研发计划项目(2020YFB1709401) 国家自然科学基金资助项目(12072114) 广东省基础与应用基础研究基金资助项目(2023A1515012830) 广东省现代土木工程技术重点实验室资助项目(2021B1212040003)。
关键词 拓扑优化 柔顺机构 参数化水平集方法 水平集带方法 几何非线性 topology optimization compliant mechanism parametrized level set method level set band method geometrical nonlinearity
  • 相关文献

参考文献5

二级参考文献67

  • 1Mingjie Cao,Haitao Ma,Peng Wei.A modified stiffness spreading method for layout optimization of truss structures[J].Acta Mechanica Sinica,2018,34(6):1072-1083. 被引量:4
  • 2左孔天,钱勤,赵雨东,陈立平.热固耦合结构的拓扑优化设计研究[J].固体力学学报,2005,26(4):447-452. 被引量:18
  • 3罗震,蒙永立,郭文德,陈立平,赵永胜.分布式柔性机构拓扑优化设计的理论和算法[J].机械工程学报,2006,42(10):27-36. 被引量:13
  • 4Howell L L.Compliant mechanisms[M].New York:McGraw-Hill,2001.
  • 5Ananthasuresh G K,Kota S.Designing compliant mechanisms[J].Mechanical Engineering,1995,117(11):93-96.
  • 6Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using a homogenizaton method[J].Computer Methods in Applied Mechanics and Engineering,1998,71:197-224.
  • 7Bendsoe M P.Optimization of structural topology,shape and material[M].Berlin:Spring-Verlag,1997.
  • 8Nishiwaki S,Frecker M I,Min S,et al.Topology optimization of compliant mechanisms using homogenization method[J].International Journal for Numerical Method Engineering,1998,42:535-559.
  • 9Frecker M I,Canfield S.Design of efficient compliant mechanisms from ground structure based optimal topologies[C] // Proceedings of the 2000 ASME Design Engineering Technical Conferences,Baltimore,Maryland:ASME,2000.
  • 10Frecker M I,Kikuchi N,Kota S.Topology optimization of compliant mechanisms with multiple outputs[J].Structural Optimization,1999,17:269-278.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部