摘要
The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field.
基金
supported in part by the National Major Scientific Research Equipment of China (61927803)
the National Natural Science Foundation of China Basic Science Center Project (61988101)
Science and Technology Innovation Program of Hunan Province (2021RC4054)
the China Postdoctoral Science Foundation (2021M691681)。