摘要
迄今为止,几乎没有学者研究Schrödinger或Klein-Gordon方程的概自守动力学.该文结合Galerkin方法、Laplace变换、Fourier级数和Picard迭代研究了带有非局部Laplace算子饱和Schrödinger-Klein-Gordon方程的概自守弱解的一些结果.此外,还考虑了该方程的全局指数收敛性.
To the best of the authors'knowledge,almost no literature focuses on the almost automorphic dynamics to Schrödinger or Klein-Gordon equations.This paper gives some results on almost automorphic weak solutions to a nonlocal Laplacian saturating Schrödinger-Klein-Gordon equations by employing a mix of Galerkin method,Laplace transform,Fourier series and Picard iteration.Beyond that,global exponential convergence of the equations is investigated.
作者
张天伟
李永昆
Zhang Tianwei;Li Yongkun(School of Mathematics and Statistics,Yunnan University,Kunming 650500)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2024年第2期326-353,共28页
Acta Mathematica Scientia
基金
国家自然科学基金(12261098,11861072)。