摘要
为获得满足规范要求的拟合楼层反应谱的三向地震动时程,采用六阶常微分方程的本征函数为基函数,分解并重构天然地震动时程;通过构建影响矩阵,迭代计算逐步调整本征函数的幅值系数,最终实现预设拟合精度;引入正交化方法保证三向地震动时程两两之间的统计独立性,并通过两组算例提供验证。研究结果表明,迭代所得时程反应谱与目标楼层反应谱的拟合精度较高,迭代过程中时程反应谱均匀一致地向目标谱逼近,迭代过程收敛,所得三向地震动时程均无零飘现象,满足规范要求。
In order to obtain the tri-dimensional seismic ground motion time histories which are compatible with the corresponding floor response spectra,the eigenfunctions of the sixth order ordinary differential equation are used as the basis functions to decompose and reconstruct the real recorded earthquake ground motion.By constructing the influence matrix,the amplitude coefficient of the eigenfunction is gradually adjusted through iterative calculation,and the preset fitting accuracy threshold is finally achieved.The orthogonalization procedure is introduced to ensure the statistical independence between the tri-directional time histories,and two sets of numerical examples are provided.The examples show that it is capable of achieving high matching accuracy between the response spectra of generated time histories and the target spectra.During the iteration,the time history response spectrum uniformly approaches the target spectra.The iterative process converges;the generated seismic time histories are drift-free and satisfy the code requirements.
作者
杨兰兰
陈杰
徐明悦
付晨
吉锋
YANG Lanlan;CHEN Jie;XU Mingyue;FU Chen;JI Feng(School of Environment and Civil Engineering,Jiangnan University,214122 Wuxi,China;Key Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration,150086 Harbin,China;State Key Laboratory of Geo-hazardPrevention and Geo-environment Protection,Chengdu University of Technology,610059 Chengdu,China)
出处
《应用力学学报》
CAS
CSCD
北大核心
2024年第2期422-431,共10页
Chinese Journal of Applied Mechanics
基金
江苏省自然科学基金青年基金资助项目(No.BK20210476)
中国地震局工程力学研究所基本科研业务费专项资助项目(No.2021D14)
中央高校基本科研业务费专项资金资助项目(No.JUSRP121056)。
关键词
抗震设计与分析
楼层反应谱
地震动时程拟合
互相关系数
本征函数
seismic design and analysis
floor response spectrum
spectral compatible ground motion
cross correlation coefficient
eigenfunction