期刊文献+

Machine learning with active pharmaceutical ingredient/polymer interaction mechanism:Prediction for complex phase behaviors of pharmaceuticals and formulations 被引量:2

下载PDF
导出
摘要 The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期263-272,共10页 中国化学工程学报(英文版)
基金 the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
  • 相关文献

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部