摘要
针对低信噪比条件下的扩频与常规调制信号分类精度低的问题,该文提出一种基于生成式对抗网络(GAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的多模态注意力机制信号调制识别方法。首先生成待识别信号的时频图像(TFIs),并利用GAN实现TFIs降噪处理;然后将信号的同相正交数据(I/Q data)与TFIs作为模型输入,并搭建基于CNN的TFIs识别支路和基于LSTM的I/Q数据识别支路;最后,在模型中添加注意力机制,增强I/Q数据和TFIs中重要特征对分类结果的决定作用。实验结果表明,该文所提方法相较于单模态识别模型以及其它基线模型,整体分类精度有效提升2%~7%,并在低信噪比条件下具备更强的特征表达能力和鲁棒性。
Considering the low classification accuracy of spreading and conventional modulated signals under low signal-to-noise ratio conditions,a multimodal attention mechanism signal modulation recognition method based on Generative Adversarial Network(GAN)and Convolutional Neural Networks(CNN)with Long Short-Term Memory(LSTM)network is proposed.Firstly,the Time-Frequency Images(TFIs)of the to-be-recognized signals are generated and the noise reduction process of TFIs is realized by using GAN;Secondly,the In-phase and Quadrature data(I/Q data)of the signals with TFIs are used as model inputs,and the CNN-based TFIs recognition branch and the LSTM-based I/Q data recognition branch are built;Finally,an attentional mechanism is added to the model to enhance the role of important features in I/Q data and TFIs in the determination of classification results.The experimental results show that the proposed method effectively improves the overall classification accuracy by 2%to 7%compared with the unimodal recognition model and other baseline models,and possesses stronger feature expression capability and robustness under low signal-to-noise ratio conditions.
作者
王华华
张睿哲
黄永洪
WANG Huahua;ZHANG Ruizhe;HUANG Yonghong(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Key Laboratory of Mobile Communication Technology,Chongqing 400065,China;School of Cyber Security and Information Law,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处
《电子与信息学报》
EI
CAS
CSCD
北大核心
2024年第4期1212-1221,共10页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61701063)
重庆市自然科学基金(cstc2021jcyj-msxmX0454)。
关键词
深度学习
自动调制识别
生成对抗网络(GAN)
多模态特征
时频分布
Deep learning
Automatic Modulation Recognition(AMR)
Generate Adversarial Network(GAN)
Multi-modal features
Time-frequency distribution