期刊文献+

A Semiparametric Additive-multiplicative Rates Model for the Weighted Composite Endpoint of Recurrent and Terminal Events

原文传递
导出
摘要 Recurrent event data are commonly encountered in many scientific fields,including biomedical studies,clinical trials and epidemiological surveys,and many statistical methods have been proposed for their analysis.In this paper,we consider to use a weighted composite endpoint of recurrent and terminal events,which is weighted by the severity of each event,to assess the overall effects of covariates on the two types of events.A flexible additive-multiplicative model incorporating both multiplicative and additive effects on the rate function is proposed to analyze such weighted composite event process,and more importantly,the dependence structure among the recurrent and terminal events is left unspecified.For the estimation,we construct the unbiased estimating equations by virtue of the inverse probability weighting technique,and the resulting estimators are shown to be consistent and asymptotically normal under some mild regularity conditions.We evaluate the finite-sample performance of the proposed method via simulation studies and apply the proposed method to a set of real data arising from a bladder cancer study.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2024年第4期985-999,共15页 数学学报(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.11771431,11690015,11926341,11731015,11901128 and 11601097) Key Laboratory of RCSDS,CAS(Grant No.2008DP173182) Natural Science Foundation of Guangdong Province of China(Grant Nos.2018A030310068,2021A1515010044) University Innovation Team Project of Guangdong Province(Grant No.2020WCXTD018) Science and Technology Program of Guangzhou,China(Grant Nos.202102020368,202102010512)。
  • 相关文献

参考文献1

二级参考文献28

  • 1Andersen P K, Gill R D. Cox's regression model for counting processes: A large sample study. Ann Statist, 1982, 10: 1100-1120.
  • 2Cai J, Schaubel D E. Marginal mean/rates models for multiple type recurrent event data. Lifetime Data Anal, 2004, 10:121-138.
  • 3Chen B E, Cook R J. The analysis of multivariate recurrent events with partially missing event types. Lifetime Data Anal, 2009, 15:41-58.
  • 4Chen X, Wang Q, Cai J, et al. Semiparametric additive marginal regression models for multiple type recurrent events. Lifetime Data Anal, 2012, 18:50-527.
  • 5Gao G, Tsiatis A A. Semiparametric estimators for the regression coefficients in the linear transformation competing risks model with missing cause of failure. Biometrika, 2005, 92:875-891.
  • 6Kalbfleisch J D, Prentice R L. The Statistical Analysis of Failure Time Data, 2nd ed. Hoboken: John Wiley & Sons, 2002.
  • 7Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73:13-22.
  • 8Lin D Y, Wei L J, Yang I, et al. Semiparametric regression for the mean and rate functions of recurrent events. J R Star Soc Set B Stat Methodol, 2000, 62:711-730.
  • 9Lin D Y, Wei L J, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika, 1993, 80:557 572.
  • 10Lin F, Cai J, Fine J P, et al. Nonparametriz estimation of the mean function for recurrent event data with missing event category. Biometrika, 2013, 100:727-740.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部