期刊文献+

Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images

下载PDF
导出
摘要 Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期269-281,共13页 Defence Technology
基金 support by the National Natural Science Foundation of China (Grant No. 62005049) Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113) Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
  • 相关文献

参考文献2

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部