期刊文献+

基于SIFT特征点提取的ICP配准算法 被引量:2

ICP Registration Algorithm Based on SIFT Feature Point Extraction
下载PDF
导出
摘要 为解决传统迭代最近点(ICP)算法对点云配准的起始点对选择不佳而导致配准时间长、效率低的问题,提出一种基于尺度不变特征变换(SIFT)特征点提取的ICP点云配准算法(ST-ICP)。首先使用SIFT算法进行原始点云与目标点云的SIFT特征点提取,根据提取特征点完成快速点特征直方图(FPFH)特征运算,通过采样一致性初始配准算法(SAC-IA)搜索对应点对、求解变换矩阵,再进一步运用ICP算法进行点云精细配准。实验结果表明:与ICP算法相比较,ST-ICP算法的配准误差在迭代次数为5次时减小了1.019 cm,迭代次数为10次时减小了0.443 cm;在配准误差达到10^(-2) cm级别时,ST-ICP算法所用时间比传统ICP算法减少了12.829 s。ST-ICP算法优化了对应点对的选择,提升了配准精度和配准效率。 The ST-ICP algorithm is proposed to address the issue of poor selection of starting point pairs in traditional iterative closest point(ICP)registration algorithm,which results in long registra-tion time and low efficiency.Firstly,the SIFT algorithm is used to extract SIFT feature points from the original point cloud and the target point cloud,and the fast point feature histogram(FPFH)fea-ture operation is completed according to the extracted feature points.This feature is used to search for the corresponding point pairs and solve the transformation matrix by sample consensus initial alignment(SAC-IA)algorithm,and the ICP algorithm is further used to perform point cloud fine local registration.The experimental results show that compared with the ICP algorithm,the registra-tion error of the ST-ICP algorithm is reduced by 1.019 cm when the number of iterations is 5 times,and 0.443 cm when the number of iterations is 10 times.When the registration error rea-ches the level of 10^(-2)cm,the time taken by the ST-ICP algorithm is reduced by 12.829 s compared with the traditional ICP algorithm.The ST-ICP algorithm optimizes the selection of corresponding point pairs,which has better registration accuracy and improves registration efficiency.
作者 钱博 宋玺钰 QIAN Bo;SONG Xiyu(Shenyang Ligong University,Shenyang 110159,China)
出处 《沈阳理工大学学报》 CAS 2024年第3期48-54,共7页 Journal of Shenyang Ligong University
基金 国家自然科学基金项目(61971291) 辽宁省教育厅科学研究经费项目(LJKZ0242)。
关键词 点云配准 迭代最近点算法 尺度不变特征变换 特征点 快速点特征直方图 point cloud registration the iterative closest point algorithm scale invariant feature transform feature points fast point feature histogram
  • 相关文献

参考文献10

二级参考文献50

共引文献135

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部