摘要
高双折射光子晶体光纤具有较强的线偏振光保持能力,采用Bi_(2)O_(3)-GeO_(2)-Ga_(2)O_(3)多组分激光玻璃材料作为纤芯设计了独特结构的高双折射光子晶体光纤。运用有限元法结合完美边界条件,得出该光子晶体光纤在1.55μm和1.80μm波长下,双折射系数分别为5.207×10^(-2)和6.882×10^(-2)。在1.55μm波长处,X和Y极化方向的限制损耗分别为1.386×10^(-5)dB/km和5.386×10^(-7)dB/km。非线性系数表明,结构参数M(D/Λ)分别为0.7和0.8的光子晶体光纤,非线性系数在X和Y极化方向上,范围分别在4.374×10^(3)-4.906×10^(3)km^(-1)·W^(-1)和5.621×10^(3)-6.978×10^(3)km^(-1)·W^(-1)之间。本文所设计的高双折射光子晶体光纤的独特结构和优异性能特点,为光通信和光传感等应用领域提供了新的解决方案。
The high birefringence photonic crystal fiber exhibits strong linear polarization maintenance capability.A unique structure of high birefringence photonic crystal fiber has been designed using multi-component laser glass materials as the core.Finite element method combined with perfect boundary conditions was employed to determine the birefringence coefficients of this photonic crystal fiber at wavelengths of 1.55μm and 1.80μm,r esulting in values of 5.207×10^(-2)and 6.882×10^(-2),respectively.At a wavelength of 1.55μm,the confinement losses in the X and Y polarization directions are 1.386×10-5 dB/km and 5.386×10^(-7)dB/km,respectively.The nonlinear coefficients indicate that for photonic crystal fibers with structural parameters M(D/Λ)equal to 0.7 and 0.8,the nonlinear coefficients in the X and Y polarization directions range between 4.374×10^(3)km^(-1)·W^(-1)to 4.906×10^(3)km^(-1)·W^(-1)and 5.621×10^(3)km^(-1)·W^(-1)to 6.978×10^(3)km^(-1)·W^(-1),respectively.The unique structure and excellent performance characteristics of the high birefringence photonic crystal fiber designed in this study provide new solutions for applications in fields such as optical communication and optical sensing.
作者
郦逸舟
谭芳
刘润泽
李飞宇
孙英泰
LI Yizhou;TAN Fang;LIU Runze;LI Feiyu;SUN Yintai(School of Science,Changchun University,Changchun 130022)
出处
《长春理工大学学报(自然科学版)》
2024年第2期23-30,共8页
Journal of Changchun University of Science and Technology(Natural Science Edition)
基金
吉林省科技创新团队(20210509044RQ)
吉林省大学生创新创业计划(2022SJ062)。
关键词
高双折射
低限制性损耗
高非线性
光子晶体光纤
有限元法
high birefringence
low limiting loss
high nonlinearity
photonic crystal fiber
finite element method