期刊文献+

椭球形反转核/壳量子点中杂质态的结合能及光致电离截面

Binding Energies of Impurity States and Photoionization Cross Sections in Ellipsoidal Inverted Core/Shell Quantum Dots
下载PDF
导出
摘要 利用变分理论和有效质量近似,研究了核为势垒、壳为势阱的椭球形反转核/壳量子点中杂质态结合能及光致电离截面随体系尺寸、椭球率以及杂质位置的变化关系。数值计算结果表明:量子点尺寸和形状对结合能及光致电离截面有着重要的影响,且结合能随量子点尺寸和杂质位置变化呈非单调变化,当壳厚度较小时椭球率的影响明显,且随着椭球率的增大结合能增加;光致电离截面的峰值强度在不同杂质位置、不同椭球率下均随着核尺寸增加而增大,并伴随着峰值位置出现红移或蓝移现象。 Under the effective mass approximation,the impurity state binding energy and photoionization cross section in ellipsoidal inverted core/shell quantum dots with the core as potential barrier and the shell as potential well as functions of the system size,ellipticity,and position of the impurity have been studied.Numerical calculations show that the size and shape of the quantum dots have important effects on the binding energy and photoionization cross section.The binding energy and photoionization cross section vary non-monotonically with the quantum dot size,the influence of ellipticity is obvious when the shell thickness is small,and the binding energy increases with the increasing ellipticity.The peak intensity of the photoionization cross section increases with the increasing core size at different impurity positions and ellipticities,and the peak position appears the redshift or blueshift.
作者 王坤 石磊 闫祖威 WANG Kun;SHI Lei;YAN Zuwei(College of Science,Inner Mongolia Agricultural University,Hohhot O10018,China)
出处 《内蒙古大学学报(自然科学版)》 CAS 2024年第2期146-153,共8页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金项目(12164033) 内蒙古自治区自然科学基金(联合)资助项目(2023LHMS01003)。
关键词 椭球形量子点 结合能 光致电离截面 ellipsoidal quantum dot binding energy photoionization cross section
  • 引文网络
  • 相关文献

参考文献5

二级参考文献30

  • 1曹艳娟,闫祖威,石磊.导带弯曲对有限深GaN/Ga_(1-x)Al_xN球形量子点中束缚极化子的影响及其压力效应[J].发光学报,2013,34(9):1128-1134. 被引量:2
  • 2赵翠兰,丁朝华,肖景林.柱型量子点中极化子的重整化质量[J].发光学报,2005,26(2):159-162. 被引量:3
  • 3Triki M ,Jaziri S. Electron-phonon interaction in CdS/ZnS quantum dot [J]. Superlattice Microst, 2005,37 (6): 365-372.
  • 4Vasilevskiy M I,Anda E V,Makler S S. Electron-phonon interaction effects in semiconductor quantum dots :A nonperturabative approach [J]. Phys. Rev. B, 2004,70(3):35318-1- 14.
  • 5Comas F,Studart N. Electron-phonon interaction in quantum-dot/quantum-well semiconductor heterostructures [J]. Phys. Rev. B,2004,69(23) : 235321-1-8.
  • 6Nishikawa Y,Nozaki Y,Nozaki Y. Zn doping characteristics for InGaA1P grown by LP-MOCVD [J]. Appl. Phys. Lett. , 1988,53(21) : 2182.
  • 7Melnikov D V, Fowler W B. Electron-phonon interaction in a spherical quantum dot with finite potential barries:The Frohlich Hamiltonian [J]. Phys. Rev. B. condens. Matter Mater, phys. ,2001,64(24) : 245320-1-9.
  • 8Zhang L,Xie H J,Chen C Y. A bound polaron in a spherical quantum dot with a finite confining potential [J]. Chinese. J. Phys. ,2003,41(2) :148-160.
  • 9Comas F, Trallero-Giner C. Surface optical phonons in spherically capped quantum-dot/quantum-well heterostructures [J]. J. Appl. Phys. ,2003,94(9) :6023-6029.
  • 10Rallero-Giner C,Studart N,Marques G E. Interface optical phonons in spheroidal quantum dots [J]. J. phys. condens. Matte. , 2002,14(25) : 6469- 6481.

共引文献5

;
使用帮助 返回顶部