期刊文献+

基于遗传算法的风光最优互补运行策略研究

Study on Optimal Complementary Operation Strategy of Wind and PV Generations Based on Genetic Algorithm
下载PDF
导出
摘要 为了充分考虑风光功率在不同时间空间尺度的各类特性,发挥风光发电的互补特性及其协同效应,提高风光系统的发电效率和经济效益,提出一种基于遗传算法的风光最优互补运行策略,该方法构建以功率平衡、运行成本最小为目标函数,以风光发电运行条件和风光发电最大功率变化量为约束条件的多目标优化模型,并采用带精英策略的非支配排序遗传算法对模型进行优化求解。 In order to fully consider the various characteristics of wind and PV power at different time and spatial scales,leverage the complementary characteristics and synergistic effects of wind and PV power generation,and improve the power generation efficiency and economic benefits,this paper proposes a genetic algorithm based optimal complementary operation strategy for wind and PV power.This method constructs with,a multi-objective optimization model with power balance and minimum operating cost as objectives,and with operating conditions and maximum power variation of wind and PV as constraints.A non-dominated sorting genetic algorithm with elite strategy is used to optimize and solve the model.
作者 李家锋 李秋鹏 王元强 梁俊坚 刘泽健 范紫微 LI Jiafeng;LI Qiupeng;WANG Yuanqiang;LIANG Junjian;LIU Zejian;FAN Ziwei(Guangdong Wind Power Generation Co.,Ltd.,Guangzhou 510000,China;Shenzhen Huagong Energy Technology Co.,Ltd.,Shenzhen 518000,China)
出处 《电工技术》 2024年第6期91-92,95,共3页 Electric Engineering
基金 2022年广东能源集团科技创新“揭榜挂帅”项目“风光经济性优化运维决策研究及示范”。
关键词 风光新能源 互补特性 遗传算法 最优互补运行 wind and PV power generations complementary characteristic genetic algorithm optimal complementary operation
  • 相关文献

参考文献6

二级参考文献64

  • 1刘山凤,龙江,方韬.风光互补新能源成新趋势[J].电气技术,2008,9(12):69-71. 被引量:20
  • 2徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598. 被引量:38
  • 3王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 4Shahirinia A H, Tafreshi S M M, Hajizadeh Gastaj A, et al. Optimal sizing of hybrid power system using genetic algorithm[C], 2005 International Conference on Future Power Systems, 2005:2-5.
  • 5Xu Daming, Kang Longyun, Chang Liuchen, et al Optimal sizing of standalone hybrid wind/PV power systems using genetic algorithms[C]. 2005 .CanadianConference on Electrical and Computer Engineering, 2005: 1722-1725.
  • 6Knowles J, Corne D. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization[C]. Proceedings of the 1999 Congress onEvolutionary Computation, Piscataway, Nanjing, 1999: 98-105.
  • 7Srinivas N, optimization algorithms[J] Computation, Deb K. Multiobjective function using nondominated sorting genetic IEEE Transactions on Evolutionary 1995, 2(3): 221-248.
  • 8Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm- NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-186.
  • 9IEEE Guide for Array and Battery Sizing in Stand- Alone Photovoltaic Systems[S]. IEEE Standards Coordinating Committee 21, New York, USA, 2008.
  • 10Huang Pengzhou, Wu Junuong, Liu XiaoMin. Multi- objective sizing optimization of standalone photovoltaic system[C]. The 1st International Confer-ence on Sustainable Power Generation and Supply, 2009, Nanjing, China, 2009: 2-4.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部