期刊文献+

A Real-time Lithological Identification Method based on SMOTE-Tomek and ICSA Optimization

下载PDF
导出
摘要 In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期518-530,共13页 地质学报(英文版)
基金 supported by CNPC-CZU Innovation Alliance supported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
  • 相关文献

参考文献8

二级参考文献106

  • 1张善文,曾溅辉,肖焕钦,邱楠生,姜振学.济阳坳陷岩性油气藏充满度大小及分布特征[J].地质论评,2004,50(4):365-369. 被引量:32
  • 2隋风贵.浊积砂体油气成藏主控因素的定量研究[J].石油学报,2005,26(1):55-59. 被引量:42
  • 3隋风贵,刘庆,张林晔.济阳断陷盆地烃源岩成岩演化及其排烃意义[J].石油学报,2007,28(6):12-16. 被引量:43
  • 4Hastie TJ, Tibshirani, R J, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition. Springer, 2009. ISBN 978-0-387-84857-0.
  • 5Fallon B, Ma J, Allan K, Pillhofer M, Trocm~ N, Jud A. Opportunities for prevention and intervention with young children: lessons from the Canadian incidence study of reported child abuse and neglect. Child Adolesc Psychiatry Ment Health. 2013; 7:4.
  • 6Patel N, Upadhyay S. Study of various decision tree pruning methods with their empirical comparison in WEKA. Int J Comp Appl; 60 (12): 20-25.
  • 7Berry MJA, Linoff G. Mastering Data Mining: The Art and Science of Customer Relationship Management. New York: John Wiley & Sons, Inc., 1999.
  • 8Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. Springer; 2001. pp: 269-272.
  • 9Zibran MF. CHI-Squared Test of Independence. Department of Computer Science, University of Calgary, Alberta, Canada; 2012.
  • 10Breiman L, Friedman JH, Olshen RA, Stone CJ. Classi)gcatT"on and Regression Trees. Belmont, California: Wadsworth, Inc.; 1984.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部