期刊文献+

自动分拣仓库中多载量AGV调度与路径规划算法

Multi-load AGVs scheduling and routing algorithm in automatic sorting warehouse
下载PDF
导出
摘要 在自动分拣仓库中,多载量自动导引小车(AGV)具有强运输能力,但其多载量特征也增加了调度与路径规划的复杂性。针对多载量AGV调度与路径规划的协同优化问题,以最小化最大搬运完成时间为目标,建立了该问题的混合整数线性规划模型,并提出一种聚类协同优化算法。算法首先定义了包裹相似度,设计聚类算法划分包裹组,使每个包裹组可由多载量AGV在一次作业中完成分拣;进而针对问题的多决策特征,设计协同进化遗传算法对包裹组进行指派和排序,并将无冲突路径规划算法引入到协同进化遗传算法的解码方案中,用以搜索最优路径并解决多AGV路径冲突,从而实现了多载量AGV调度与路径规划的协同优化。通过不同问题规模的仿真实验验证了所提算法的高效性和稳定性。 In an automatic sorting warehouse,the multi-load AGV has strong transportation capacity,but its multi-load characteristic also increases the complexity of scheduling and routing.Aiming at the collaborative optimization problem of multi-load AGVs scheduling and routing,a mixed integer linear programming model was established with the goal of minimizing the maximum handling completion time.Then,a Clustering-Collaborative Optimization Algorithm(CCOA)was proposed.Firstly,the package similarity was defined,and a clustering algorithm was designed to divide the packages into several groups,so that the packages contained in each group could be sorted by a multi-load AGV in one operation trip.Furthermore,according to the multi-decision characteristics of the problem,a Co-evolutionary Genetic Glgorithm(CGA)was designed to assign and sort the divided groups,and the conflict-free routing algorithm designed was embedded in CGA to search the optimal route and resolve the conflicts between multiple AGVs,so as to achieve the collaborative optimization of multi-load AGVs scheduling and routing.Extensive simulation experiments with different problem scales were carried out to verify the efficiency and stability of the proposed algorithm.
作者 余娜娜 李铁克 张文新 袁帅鹏 张卓伦 王柏琳 YU Nana;LI Tieke;ZHANG Wenxin;YUAN Shuaipeng;ZHANG Zhuolun;WANG Bailin;+(School of Management Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China;Engineering Research Center of MES Technology for Iron&Steel Production,Ministry of Education,Beijing 100083,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1458-1471,共14页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(72301026,71231001) 教育部人文社会科学研究青年基金资助项目(17YJC630143) 北京市自然科学基金资助项目(9174038) 中央高校基本科研业务费资助项目(FRF-BD-20-16A) 河南省科技攻关资助项目(242102220039)。
关键词 多载量自动导引小车 调度 路径规划 协同优化 自动分拣仓库 multi-load automated guided vehicle scheduling routing collaborative optimization automatic sorting warehouse
  • 相关文献

参考文献7

二级参考文献152

  • 1巩敦卫,郝国生,周勇,孙晓燕.分层交互式进化计算及其应用[J].控制与决策,2004,19(10):1117-1120. 被引量:15
  • 2孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440. 被引量:7
  • 3刘漫丹.文化基因算法(Memetic Algorithm)研究进展[J].自动化技术与应用,2007,26(11):1-4. 被引量:37
  • 4Wiegand R P. An analysis of cooperative coevolutionary algorithms[D]. Faiffax: Department of Computer Science, George Mason University, 2003.
  • 5Canttl-Paz E. A survey of parallel genetic algorithms[J]. Calculateurs Paralleies, Reseaux et Systems Repartis, 1998, 10(2): 141-171.
  • 6Alba E, Tomassini M. Parallelism and evolutionary algorithms[J]. IEEE Trans on Evolutionary Computation, 2002. 6(5): 443-462.
  • 7Rosin C D, Belew R K. New methods for competitive coevolution[J]. Evolutionary Computation, 1997, 5(1): 1- 29.
  • 8Hillis W D. Co-evolving parasites improve simulated evolution as an optimization procedure[J]. Physica D: Nonlinear Phenomena, 1990, 42(1): 228-234.
  • 9Aitkenhead M J. A co.-evolving decision tree classification method[J]. Expert Systems with Applications, 2008, 34(1): 18-25.
  • 10Paredis J. Co-evolutionary constraint satisfaction[C]. Parallel Problem Solving from Nature PPSN III. Berlin: Springer, 1994: 46-55.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部