摘要
现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and feature fusion,DRPFF),该模型使用预训练的基于Transformer的双向编码表示模型(bidirectional encoder representation from transformers,BERT)对文本进行编码,并设计两阶段的双关系预测结构来减少抽取过程中错误三元组的生成。在阶段间通过门控线性单元(gated linear unit,GLU)和条件层规范化(conditional layer normalization,CLN)组合的结构来更好地融合实体之间的特征。在NYT和WebNLG这2个公开数据集上的试验结果表明,该模型相较于基线方法取得了更好的效果。
The staged decoding entity relation extraction model still has an insufficient feature fusion problem between stages,which increases the impact of exposure bias on the extraction performance.Herein,we propose a new entity relation extraction model with dual relation prediction and feature fusion(DRPFF).DRPFF uses a pretrained model of bidirectional encoder representation from transformers to encode texts,and a two-stage dual relation prediction structure is developed to reduce the false triples’generation.Between stages,a structure combining gated linear units and conditional layer normalization is utilized to fuse features better between entities.Experimental findings on two public datasets,NYT and WebNLG,demonstrate that the presented method has better results than the baseline methods.
作者
沈健
夏鸿斌
刘渊
SHEN Jian;XIA Hongbin;LIU Yuan(School of Artificial Intelligence and Computer,Jiangnan University,Wuxi 214122,China;Jiangsu Key Laboratory of Media Design and Software Technology,Wuxi 214122,China)
出处
《智能系统学报》
CSCD
北大核心
2024年第2期462-471,共10页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金项目(61972182)。
关键词
实体关系抽取
关系三元组
预训练模型
双关系预测
指针网络
特征融合
门控线性单元
条件层规范化
entity relation extraction
relational triple
BERT pretrained model
dual relation prediction
pointer network
feature fusion
gated linear unit
conditional layer normalization