期刊文献+

基于改进的VGG-16网络结构的焊缝缺陷识别技术研究

Research on Weld Defect Recognition Technology Based on Improved VGG-16 Network Structure
下载PDF
导出
摘要 焊接技术在多个领域广泛应用,近年来焊缝缺陷的自动检测已成为研究的热点。本文针对铝合金熔焊焊缝的X射线图像,采用VGG-16卷积神经网络作为基础网络,提出了一种SC-VGG的新型网络结构。该结构通过引入多尺度合成卷积层来替代传统的单一卷积层,优化了训练过程中的损失函数,使网络更加聚集于焊缝缺陷类型的精确预测。实验结果表明,SC-VGG网络结构在训练过程中展现出了良好的收敛性。与其他网络相比,SC-VGG网络在提取焊缝缺陷特征方面表现优异,其平均准确率和召回率分别达到了95.86%和98.33%,为焊缝缺陷的自动化分类提供了算法支撑。 Welding technology is widely used in multiple fields,and the automatic detection of weld defects has become a research hotspot in recent years.In this paper,aiming at the X-ray images of aluminum alloy fusion welding seams,a new network structure called SC-VGG is proposed,using the VGG-16 convolutional neural network as the basic network.This structure replaces the traditional single convolutional layer with a multi-scale synthetic convolutional layer and optimizes the loss function in the training process,making the network more focused on accurate prediction of weld defect types.Experimental results show that the SC-VGG network structure exhibits good convergence during the training process.Compared with other networks,the SC-VGG network performs excellently in extracting weld defect features,with an average accuracy and recall rate reaching 95.86%and 98.33%respectively,providing algorithm support for the automatic classification of weld defects.
作者 刘骁佳 曹立俊 刘欢 王飞 危荃 Liu Xiaojia;Cao Lijun;Liu Huan;Wang Fei;Wei Quan(Shanghai Aerospace Precision Machinery Research Institute,Shanghai 201600)
出处 《航天制造技术》 2024年第2期55-59,共5页 Aerospace Manufacturing Technology
关键词 焊缝检测 缺陷识别 VGG-16模型 合成卷积 weld inspection defect identification VGG-16 model synthetic convolution
  • 相关文献

参考文献10

二级参考文献84

  • 1张珺.论排水管道的检测及评价方法[J].给水排水,2011,37(S1):418-420. 被引量:24
  • 2LIAO T W.Classification of welding flaw types with fuzzy expert systems[J].Expert Systems with Applications.2003.25(1),101-111.
  • 3LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49(3):154-159.
  • 4MERY D,DASILVAR R,CALOBAL P,et al.Pattern recognition in the automatic inspection of aluminium castings[J].Insight,2003,45(7):475-483.
  • 5WANG G,LIAO T W.Automatic identification of different types of welding defects in radiographic images[J].NDT & E International,2002,35(8):519-528.
  • 6ZHANG Xiaoguang,ZHU Zhencai,XU Jihua,et al.The classification algorithm of defects in weld image based on asymmetrical SVM[C] //International Conference on Control and Automation.Piscataway,NJ,USA:IEEE,2005:1215-1219.
  • 7ZHANG Xiaoguang,XU Jianjian,GE Guangying.Defects recognition on X-ray images for weld inspection using SVM[C] //Proceedings of 2004 International Conference on Machine Learning and Cybernetics.Piscataway,NJ,USA:IEEE,2004:3721-3725.
  • 8SILVA R R,CALA L P,SIQUEIRA M H S,et al.Pattern recognition of weld defects detected by radiographic test[J].NDT& E International,2004,37(6):461-470.
  • 9EFRON B,TIBSHIRANI R J.An introduction to the bootstrap[M].London,UK:Chapman & Hall,1997.
  • 10HSU C W,CHANG C C,LIU C J.A practical guide to support vector classification[EB/OL].[2010-03-20].http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

共引文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部