期刊文献+

人工神经网络与遗传算法预测液体晃荡参数的比较

Comparison of Artificial Neural Networks and Genetic Algorithms for Predicting Liquid Sloshing Parameters
下载PDF
导出
摘要 This paper develops a numerical code for modelling liquid sloshing.The coupled boundary element-finite element method was used to solve the Laplace equation for inviscid fluid and nonlinear free surface boundary conditions.Using Nakayama and Washizu’s results,the code performance was validated.Using the developed numerical mode,we proposed artificial neural network(ANN)and genetic algorithm(GA)methods for evaluating sloshing loads and comparing them.To compare the efficiency of the suggested methods,the maximum free surface displacement and the maximum horizontal force exerted on a rectangular tank’s perimeter are examined.It can be seen from the results that both ANNs and GAs can accurately predict η_(max) and F_(max).
出处 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第2期292-301,共10页 Journal of Marine Science and Application
  • 相关文献

参考文献1

二级参考文献3

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部