期刊文献+

求解广义Rosenau-Kawahara方程的一个非线性加权守恒差分格式

A Nonlinear Weighted Conserved Difference Scheme for the Generalized Rosenau-Kawahara Equation
下载PDF
导出
摘要 对广义Rosenau-Kawahara方程的初边值问题进行数值研究。在二阶精度前提下,在空间层引入两个加权系数,构造了一个带有两个加权系数的两层非线性差分格式。该格式很好地模拟了原问题的一个守恒性质。利用离散泛函分析方法证明了该格式的二阶收敛性与无条件稳定性。数值实验表明,通过适当调整两个加权系数可使计算精度大幅度提高,证明本文提出的加权格式是有效的。 A numerical method for a class of generalized Rosenau-Kawahara equation with initial boundary value problem is studied.Based on the second order accuracy,a nonlinear two-level difference scheme is constructed when two weighted coefficients are introduced at the space level.The scheme can reasonably simulate the original conservation.By the discrete functional analysis method,the second order convergence and stability of the scheme are analyzed.Numerical experiments results show that the calculation accuracy can be greatly improved by adjusting the two weighting coefficients,which proves that the weighting scheme proposed in this paper is effective.
作者 张爽 胡劲松 ZHANG Shuang;HU Jinsong(The Experimental School Affiliated to Xihua University,Chengdu 610039 China;School of Science,Xihua University,Chengdu 610039 China)
出处 《西华大学学报(自然科学版)》 CAS 2024年第3期106-112,共7页 Journal of Xihua University:Natural Science Edition
基金 四川省应用基础研究项目(2019JY0387)。
关键词 广义Rosenau-Kawahara方程 加权差分格式 守恒 收敛性 稳定性 generalized Rosenau-Kawahara equation weighted difference scheme conservation convergence stability
  • 相关文献

参考文献5

二级参考文献52

  • 1王廷春,张鲁明.求解广义正则长波方程的守恒差分格式[J].应用数学学报,2006,29(6):1091-1098. 被引量:14
  • 2ZUO J. Solitons and periodic solutions for the Rosenau KdV and Rosenau-Kawahara Equations[J].Applied Mathematics and Computation, 2009, 215(2): 835.
  • 3LABIDI M, BISWAS A. Application of He's principles to Rosenau-Kawahara equation E J 1. Mathematics in Engineering, Science and Aerospace, 2009, 2(2):183.
  • 4BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenau? Kawahara equation with power law nonlinearity[J]. Physics of Wave Phenomena, 2011, 19(1): 24.
  • 5HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation [J]. Advances in Mathematical Physics, 2014 (2014), Article ID 217393, 11 pages.
  • 6WANG T, GUO B, ZHANG L. New conservative difference schemes for a coupled nonlinear Schr6dinger system [J]. Applied Mathematics and Computation, 2010, 217(4) :1604.
  • 7HU J, ZHENG K. Two conservative difference schemes for the generalized Rosenau equation [J].Boundary Value Problems, 2010(2010), Article ID 543503, 18 pages.
  • 8PAN X, ZHANG L. On the convergence of a conservative numerical scheme for the usual Rosenau RLW equation [J]. Applied Mathematical Modelling, 2012, 36(8): 3371.
  • 9BROWDER F E. Existence and uniqueness theorems for solutions of nonlinear boundary value Problems [ J ]. Proceedings of Symposia in Applied Mathematics, 1965, 17: 24.
  • 10ZHOU Yu-lin. Application of Discrete Functional Analysis to the Finite Difference Methods [M]. Beijing: International Academic Publishers, 1990.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部