期刊文献+

广义b方程的孤立波解及周期波解

Solitary and Periodic Solutions of the Generalized b-equation
下载PDF
导出
摘要 对于广义b方程的研究主要集中在b≥0的情况,该文利用分支方法研究了b=−3这类特殊广义b方程的分支、非线性波解及动力学特征.在一定参数条件下,得到了该方程的分支相图,还发现了不同于b>0情况的新现象,在行波系统中有无限多周期轨穿过奇异直线φ=c.同时,给出了光滑孤立波解和光滑周期波解的存在性及其精确表达式,共获得了15个非线性波解的显式表达式. The research of generalized b-equation mainly focuses on the case of b≥0.This paper uses the bifurcation method to investigate the bifurcation,nonlinear wave solutions and dynamical characteristics of generalized b-equation with b=−3.Under certain parameter conditions,one obtains the bifurcation phase diagram of the equation.Meanwhile,a new phenomenon is found different from the case of b>0,in which an infinite number of periodic trajectories in the traveling wave system cross the singular lineφ=c.The existence of solitary and periodic solutions is given,and the 15 exact expressions for nonlinear wave solutions are obtained.
作者 杨佼朋 梁勇 Yang Jiaopeng;Liang Yong(School of Mathematics and Statistics,Guangdong University of Foreign Studies,Guangzhou 510006;School of Mathematics,South China University of Technology,Guangzhou 510640)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2024年第3期670-686,共17页 Acta Mathematica Scientia
基金 国家自然科学基金(12201136) 广东省青年创新人才项目(2021KQNCX019) 广州市基础与应用基础研究项目(202201010278)。
关键词 广义 b 方程 定性理论 分支方法 孤立波解 周期波解 Generalized b-equations Qualitative theory Bifurcation method Solitary solutions Periodic solutions
  • 相关文献

参考文献2

二级参考文献36

  • 1Camassa, R., Holm, D.D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71:1661-1664 (1993).
  • 2Chen, C., Tang, M.Y. A new type of bounded waves for Degasperis-Procesi equations. Chaos Soliton Fract., 27:698-704 (2006).
  • 3Constantin, A. Soliton interactions for the Camassa-Holm equation. Exp. Math., 15:251-264 (1997).
  • 4Constantin, A., Strauss, W.A. Stability of Peakons.Commun. Pur. Appl. Math., 53:603-610 (2000).
  • 5Degasperis, A., Holm, D.D., Hone, A.N.W. A new integrable equation with peakon solutions. Theor Math. Phys., 133:1463-1474 (2002).
  • 6Degasperis, A., Holm, D.D., Hone, A.N.W. Integrable and non-integrable equations linear physics: Theory and experiment Ⅱ, eds. Ablowitz, M.J., Boiti, M., Pempinelli, Gallipoli, 2002, 37-43.
  • 7with peakons. Non- F.. World Scientific. Degasperis, A., Procesi, M. Asymptotic integrability. Symmetry and perturbation theory, eds. Degasperis A.. Gaeta. G., World Scientific. Singapore. 1999. 23-37.
  • 8Escher, J., Seiler, J. The periodic b-equation and Euler equations on the circle. J. Math. Phys., 51: 053101, (2010).
  • 9Guha, P. Euler-Poincare formalism of (two component) Degasperis-Procesi and Holm-Staley type systems. J. Nonlinear Math. Phys., 14:398-429 (2007).
  • 10Guo, B.L., Liu, Z.R. Periodic cusp wave solutions and single-solitons for the b-equation. Chaos Soliton Fract., 23:1451-1463 (2005).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部