期刊文献+

基于数据挖掘方法探讨脾胃名家李德新教授临床诊疗虚劳疾病规律 被引量:1

Analysis on Rules of Famous Professor LI Dexin of Spleen and Stomach in Clinical Diagnosis and Treatment of Consumptive Diseases through Data Mining
下载PDF
导出
摘要 目的基于数据挖掘技术探讨李德新教授治疗虚劳疾病的用药规律。方法收集、整理李德新教授临床诊疗虚劳疾病的病例,运用频数、频率、聚类分析、关联分析等方法对病例中的证型诊断和处方用药进行统计分析和数据挖掘,归纳整理后对医案数据进行科学计算。结果共纳入治疗标准医案虚劳741例,挖掘出与疾病相对应的高频症状、高频证型、高频中药,并对中药进行聚类分析得到有效配伍,同时进行症状、证型与相关中药的关联分析。结论利用数据挖掘技术,可初步揭示李德新教授临床诊疗虚劳疾病的规律,从虚劳论治,培补虚劳对于疾病的治疗具有重要意义,有助于更好地传承李德新教授的学术思想,具有较高的临床参考和学习价值。 Objective Using the advanced data mining technology to analyze the rules of medication of Professor LI Dexin in the treatment for consumptive diseases.Methods To collect and sort out the cases of Professor LI Dexin in clinical diagnosis and treatment of virtual labor diseases,conduct statistical analysis and data mining of syndrome diagnosis and prescription medication by means of frequency,cluster analysis,association analysis and other methods,summarize and sort out scientific calculation of medical case data.Results A total of 741 cases of consumptive diseases were included in the treatment standard.The high frequency symptoms,syndrome types and Chinese medicine corresponding to the disease were found out,and the effective compatibility of Chinese medicine was obtained by cluster analysis.Meanwhile,the correlation analysis of symptoms,syndrome types and related Chinese medicine was carried out.Conclusion Using data mining technology,the rules of consumptive diseases in clinical diagnosis and treatment can be preliminarily revealed,which is helpful to better inherit the Professor LI Dexin's academic thoughts and has high clinical reference and learning value.
作者 翁姣 王彩霞 WENG Jiao;WANG Caixia(Liaoning University of Traditional Chinese Medicine,Shenyang 110847,Liaoning,China)
机构地区 辽宁中医药大学
出处 《辽宁中医药大学学报》 CAS 2024年第6期47-51,共5页 Journal of Liaoning University of Traditional Chinese Medicine
基金 国家重点基础研究发展计划(“973”计划)项目(2013CB531701)。
关键词 李德新 虚劳 证治规律 数据挖掘 数据分析 LI Dexin consumptive diseases differentiation syndrome and treatment regular rules data mining data analysis
  • 相关文献

参考文献20

二级参考文献249

共引文献260

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部