期刊文献+

Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism

下载PDF
导出
摘要 A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页 工程与科学中的计算机建模(英文)
  • 相关文献

参考文献2

二级参考文献25

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部