摘要
经典的多元线性回归模型要求残差满足高斯-马尔柯夫假设(G-M),在实际生活中由于数据的随机性往往很难满足这个条件.利用Sahu等在2003年提出的偏正态分布来拓展经典的回归模型,给出了偏正态分布众数的近似表达式,建立了偏正态分布下均值和众数多元线性回归模型.在求解模型的参数估计时使用偏正态分布的分层表示构造EM算法.在M步统一给出两点步长梯度下降算法,同时也对均值模型给出显示迭代表达式.最后通过模拟分析以及实例来讨论两种回归模型的可行性.
The classic multivariate linear regression model requires the residuals to meet the Gauss-Markov Conditions(G-M),which is often difficult to meet in real life due to the randomness of the data.Using the skew-normal distribution proposed by Sahu in 2003 to expand the classical regression model,the approximate expression of the mode is given under the skew-normal distribution,and the multivariate linear regression models of the mean and mode are established under the skew-normal distribution.In order to estimate the unknown parameters of the model,the EM algorithm is constructed by using the hierarchical representation of the skew-normal distribution.The two-point step gradient descent algorithm is uniformly given in M step,and the explicit iteration expression is also given for the mean regression model.Finally,the feasibility of the two regression models is discussed through simulation studies and examples analysis.
作者
姜喆
王丹璐
吴刘仓
JIANG Zhe;WANG Dan-lu;WU Liu-cang(Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China;Center for Applied Statistics,Kunming University of Science and Technology,Kunming 650500,China)
出处
《高校应用数学学报(A辑)》
北大核心
2024年第2期141-151,共11页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(12261051)
昆明理工大学哲学社会科学科研创新团队(CXTD20230050)
昆明理工大学学术科技创新基金(2022KJ150)。