期刊文献+

边缘计算下差分隐私的应用研究综述

Survey of Application of Differential Privacy in Edge Computing
下载PDF
导出
摘要 为了解决传统云计算模式的延迟和带宽限制,应对物联网和大数据时代的需求,边缘计算开始崭露头角并逐渐受到广泛关注。在边缘计算环境下,用户数据的隐私问题成为了一个重要的研究热点。差分隐私技术有着坚实的数学基础,它作为一种有效的隐私保护算法,已经被广泛应用于边缘计算中,两者的结合有效缓解了隐私保护低和计算成本高的问题。首先介绍了互联网发展带来的问题,其次介绍了边缘计算的基本概念、特点和组成部分,并概括了与传统云计算相比的优势,然后对差分隐私的基本概念和原理进行了概括,进而详细阐述了差分隐私的3种扰动方式和常用的实现机制,最后对边缘计算下差分隐私的应用研究进行了综述,并指出了未来的研究方向。总之,将差分隐私技术应用于边缘计算场景对隐私保护和数据分享都是一种有效保护手段。 In order to address the latency and bandwidth limitations of the traditional cloud computing model and to cope with the demands of the Internet of Things and the big data era,edge computing is making its appearance and gaining widespread attention.In the edge computing environment,the privacy of user data has become an important research hotspot.The combination of differential privacy techniques,which have a solid mathematical foundation,has been widely used in edge computing as an effective privacy-preserving algorithm to improve the problem of low privacy protection and high computational cost.The problems brought about by the development of the Internet are firstly introduced,followed by the basic concepts,features and components of edge computing,and the advantages compared with traditional cloud computing are outlined.The basic concepts and principles of differential privacy are again outlined,followed by a detailed description of the three perturbation methods and common implementation mechanisms of differential privacy,and finally the research on the application of differential privacy under edge computing is reviewed.Finally,the research on the application of differential privacy under edge computing is reviewed and future research directions are pointed out.In conclusion,the application of differential privacy techniques to edge computing scenarios is an effective means to protect privacy and data sharing.
作者 孙剑明 赵梦鑫 SUN Jianming;ZHAO Mengxin(School of Computer and Information Engineering,Harbin University of Commerce,150028,China)
出处 《计算机科学》 CSCD 北大核心 2024年第S01期884-892,共9页 Computer Science
基金 国家自然科学基金(32201411)。
关键词 边缘计算 差分隐私 本地化差分隐私 隐私保护 实时数据处理 Edge computing Differential privacy Local differential privacy Privacy preserving Real-time data processing
  • 相关文献

参考文献19

二级参考文献128

  • 1ZHAO Dongqing,LUE Zhiping,ZHANG Xiguang.Location and Its Semantics in Location-Based Services[J].Geo-Spatial Information Science,2007,10(2):145-150. 被引量:1
  • 2KIDO H, YANAGISAWA Y, SATOH T. Protection of location privacy using dummies for location-based services[C]//The 21st International Conference on Data Engineering Workshops, ICDEW IEEE Computer Society. Washington, DC, 2005: 1248-1254.
  • 3MOKBEL M F, CHOW C Y, AREF W G. The new casper: query processing for location services without compromising pri- vacy[C]//The 32nd International Conference on Very Large Data Bases, VLDB Endowment. 2006: 763-774.
  • 4BAMBA B, LIU L, PESTI P, et al. Supporting anonymous location queries in mobile environments with privacygrid[C]//WWW, ACM, 2008: 237-246.
  • 5DWORK C. Differential privacy[C]//The 33rd International Collo- quium on Automata, Languages and Programming (ICALP). Venice, Italy, 2006:1-12.
  • 6DWORK C. Differential privacy: a survey of results[C]//The 5th International Conference on Theory and Applications of Models of Computation (TAMC). Xi'an, China, 2008:1-19.
  • 7CHEN R, ACS G, CASTELLUCCIA C. Differentially private sequen- tial data publication via variable-length n-grams[C]//The 2012 ACM Conferenceon Computer and Communications Security, CCS, ACM, NewYork, 2012: 638-649.
  • 8DEWRI R. Local differential perturbations: location privacy under approximate knowledge attackers[J]. IEEE Trans on Mobile Comput- ing, 2013,12(12): 2360-2372.
  • 9HOg S, RUAN S. Differential privacy for location pattern min- ing[C]//SPRINGL, ACM. 2011 : 17-24.
  • 10ZHANG J D, GHINITA G, CHOW C Y. Differentially private location recommendations in geosocial networks[C]//IEEE 15th International Conference on MDM, 2014:59-68.

共引文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部