摘要
能够实时监测钻头磨损程度对于钻井提速是一个直观的参考目标。但钻井现场难以采集直接反映钻头磨损情况的参数,目前对钻头磨损程度的监测手段较少,主要依靠技术人员的经验判断。如何定量评估PDC钻头磨损程度一直是研究的难点。钻头磨损程度评价主要基于破岩效率和机械比能。通过物理模型计算机械比能,并通过小波分析、聚类算法表征钻头磨损过程,建立了基于门控循环单元(GRU)神经网络的PDC钻头磨损实时监测模型,形成了钻井参数与钻头磨损程度的映射关系,模型精度达95%。采用新疆油田A井数据对模型进行测试,结果表明该模型可以正确预测当前钻头磨损级别。该模型为钻头磨损监测提供了一种解决方案,可以辅助现场工程师判断起下钻时机,以保证更高的钻井效率。
Real-time monitoring of bit wear is crucial for accelerating drilling operations.However,it is challenging to measure on-site parameters that directly reflect levels of bit wear.Currently,there are few means of monitoring bit wear,and in most cases,determination of bit wear is empirically performed by technicians.Quantitatively evaluating the wear of PDC bit has always been a difficult task.The evaluation of bit wear is primarily based on rock breaking efficiency and mechanical specific energy.In this study,a model is proposed for real-time monitoring of PDC bit wear,based on a physical model to calculate mechanical specific energy.Moreover,the wavelet analysis and clustering algorithm are utilized to characterize the bit wear process.Finally,a monitoring model based on Gated Recurrent Unit(GRU)neural network is established,which maps drilling parameters to bit wear levels with 95%accuracy.The model is tested using data from Well A in Xinjiang Oilfield,which demonstrates the capability of the model to accurately estimate current bit wear levels.This model provides a solution for bit wear monitoring,aiding engineers in determining the optimal timing for bit replacement and thereby ensuring higher drilling efficiency.
作者
钟尹明
柯迪丽娅·帕力哈提
白佳帅
王超尘
李起豪
ZHONG Yiming;KEDILIYA Palihati;BAI Jiashuai;WANG Chaochen;LI Qihao(Research Institute of Engineering Technology,PetroChina Xinjiang Oilfield Company,Karamay 834000,Xinjiang,China;College of Artificial Intelligence,China University of Petroleum(Beijing),Changping 102249,Beijing,China)
出处
《新疆石油天然气》
CAS
2024年第2期21-28,共8页
Xinjiang Oil & Gas
基金
国家重点研发计划“复杂油气智能钻井理论与方法”(2019YFA0708300)
中国石油天然气集团公司与中国石油大学(北京)战略合作技术项目“钻完井人工智能理论与应用场景关键技术研究”(ZLZX2020-03)。
关键词
钻井
钻头磨损
聚类算法
小波分析
GRU神经网络
机器学习
drilling
bit wear
clustering algorithm
wavelet analysis
GRU neural network
machine learning