期刊文献+

基于信息安全强度的路侧设备任务调度优化策略

Task scheduling optimization strategy for roadside unit based on security strength
下载PDF
导出
摘要 车路协同系统中,车辆由于自身计算资源局限性将任务卸载至路侧设备(RSU)进行执行,然后由RSU考虑在本地处理任务或将任务卸载至云端的“车-边-云”架构,是近年来受到广泛关注的边缘计算新模式。由于“边-云”侧无线信道的开放接入以及不确定性,需要增加安全机制来保证数据传输的可靠性,然而增加安全机制会使RSU的计算负载增加,进而使得RSU的能耗增加。针对如何在满足任务时延约束条件下优化路侧设备能耗及信息安全效用,提出了车路协同系统下路侧设备基于能耗-队列均衡的联合任务调度及加密优化(EPTS),并建立车速状态模型、任务加密模型、数据缓存队列模型、任务计算模型及优化目标函数。利用李雅普诺夫优化理论将优化问题模型进行转化,并将转化后的模型描述为背包问题进行求解,仿真结果验证了所提出的EPTS具有较好的收敛性和有效性,平均目标价值优于平均分配策略17%,优于任务队列长度加权分配策略21%。 In the context of cooperative vehicle-infrastructure systems(CVIS),vehicles often offload computational tasks to roadside units(RSUs)for execution due to their own constrained computing resources.A novel approach that has garnered increased attention involves the“vehicle-edge-cloud”framework,wherein RSUs decide whether to process tasks locally or to offload them to the cloud.The open and unpredictable nature of the wireless channels on the“edge-cloud”interface necessitates the incorporation of a security mechanism to safeguard the integrity of information transmission.However,integrating such a security mechanism can escalate the energy consumption of RSUs.Addressing the challenge of jointly optimizing roadside energy consumption and information security utility,without compromising task delay constraints,is a complex issue.To tackle this,an energy-packets queue tradeoff of task scheme and encryption strategy(EPTS)was introduced.This approach involved the development of a vehicle speed state model,a task encryption model,a data cache queue model,and a task calculation model,along with the formulation of an optimization objective function.The optimization model was subsequently transformed using Lyapunov optimization theory and was reformulated as a knapsack problem for resolution.The simulation results confirm the EPTS's commendable convergence and effectiveness.The average objective value achieved by the proposed EPTS was found to be 17%superior to that of the Equal Allocation Strategy(EAS)and 21%superior to the queue-weighted strategy(QS).
作者 苏北坡 代亮 巨永锋 SU Beipo;DAI Liang;JU Yongfeng(School of Electronics and Control Engineering,Chang'an University,Xi'an 710064,China;The Joint Laboratory for Internet of Vehicles,Ministry of Education-China Mobile Communications Corporation,Chang'an University,Xi'an 710018,China)
出处 《网络与信息安全学报》 2024年第2期106-120,共15页 Chinese Journal of Network and Information Security
基金 国家重点研发计划项目(No.2021YFB2601401) 长安大学中央高校基本科研业务费专项资金(No.300102323201)。
关键词 车路协同系统 路侧设备 能耗 信息安全效用 李雅普诺夫 cooperative vehicle-infrastructure system roadside units energy consumption information security utility Lyapunov
  • 引文网络
  • 相关文献

参考文献10

二级参考文献93

  • 1刘红波,赵军.基于MEC的VR关键技术[J].电信科学,2019,35(S02):149-154. 被引量:6
  • 2史美萍,彭晓军,贺汉根.全虚拟无人车辆自主导航仿真系统的研究与实现[J].系统仿真学报,2004,16(8):1721-1724. 被引量:12
  • 3孙荣创,张蕾,王萍.浅谈单片机常见攻击技术及应对策略[J].中国科技信息,2006(16):124-124. 被引量:2
  • 4罗亮红.基于ZIGBEE的车路协同关键技术研究[D].广州:华南理工大学,12-15.
  • 5王云鹏.智能车路协调系统[C]//第三届智能交通科技论坛.湖北,武汉:武汉理工大学,2010.
  • 6Vehicle Infrastructure Integration(VII) Version1. 3.1 [R]. Washington, DC.. ITS Joint Program Office US Department of Transportation, April, 2008.
  • 7柯亮宇.无线行动通讯明日之星一车载无线通讯发烧.[EB/0L].(2009-6-i0)[2010-8-30].http://www.artc.org.tw/chinese/03-service/03-02detail.aspx?pid=39.2010.
  • 8Ashwin Amanna . Overview of IntelliDrive / Vehicle Infrastructure Integration (Ⅶ) [R]. Virginia: Virginia Tech transportation institute,2009.
  • 9王笑京.智能交通与道路交通安全一发展动态及建设[C]//第四届中国智能交通年会,青岛:全国智能交通系统协调指导小组,2008.
  • 10Michael Chapman. Using Vehicle Probe Data to Diagnose Road Weather Conditions-Results from the Detroit IntelliDriveSM [C]// Washington, D. C , State Transportation Departments, TRB 2010 Annual Meeting. 2010 : 1-16.

共引文献209

;
使用帮助 返回顶部