期刊文献+

S^(*)-收敛和局部强紧空间

S^(*)-convergence and locally hypercompact spaces
下载PDF
导出
摘要 定向空间是定向完备偏序集的拓扑推广,局部强紧空间可以刻画为拟连续的定向空间.本文给出了关于局部强紧空间的一个拓扑版的Scott收敛定理.通过引入S^(*)-收敛的概念并定义有限逼近空间,本文得到以下主要结果:(i)定向空间X是局部强紧的当且仅当S_(X)^(*)-收敛是可拓扑化的;(ii)对任意T0空间X,S_(X)^(*)-收敛是可拓扑化的当且仅当X是有限逼近空间;(iii)若定向空间X上的Lawson拓扑是紧的,则X是赋予Scott拓扑的定向完备偏序集. Locally hypercompact spaces can be characterized as quasicontinuous monotone determined spaces,where monotone determined spaces are topological extensions of dcpos in domain theory.In this paper,we give a topological version of the Scott convergence theorem for locally hypercompact spaces.By introducing the notion of S^(*)-convergence and defining the notion of finitely approximated spaces,the following main results are obtained:(i)A monotone determined space X is locally hypercompact iff S_(X)^(*)-convergence is topological;(ii)For a T0 space X,S_(X)^(*)-convergence is topological iff X is a finitely approximating space;(iii)If the Lawson topology on a monotone determined space X is compact,then X is a dcpo endowed with the Scott topology.
作者 陈俣旭 寇辉 CHEN Yu-Xu;KOU Hui(School of Mathematics,Sichuan University,Chengdu 610064,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期81-86,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(12231007,11871353,12001385)。
关键词 S^(*)-收敛 定向空间 局部强紧空间 LAWSON拓扑 S^(*)-convergence Monotone determined space Locally hypercompact space Lawson topology
  • 相关文献

参考文献3

二级参考文献12

  • 1Abramsky S, Jung A. Domain Theory, Handbook of logic in computer science[M]. Oxford: Oxford Uni- versity Press, 1994.
  • 2Battenfeld I. A Category of topological predomains [D]. Darmstadt: Technische Universitit Darmstadt, 2004.
  • 3Battenfeld I. Computational effects in topological do- main theory [J]. Electronic Notes in Theoretical Computer Science, 2006, 158: 65.
  • 4Bauer A. A relationship between equilogical spaces and type two effectivity[J]. Electronic Notes in The- oretical Computer Science, 2001, 45 : 18.
  • 5Bauer A, Birkedal L, Scott D. Equilogical spaces [J]. Theoretical Computer Science, 2004, 315: 40.
  • 6Battenfeld I, Schr6der M, Simpson A. A convenient category of domains[J]. Electronic Notes in Theoret- ical Computer Science, 2007, 172: 75.
  • 7Gierz G, Hofmann K H, Keimel K, et al. Continu- ous lattices and domains[M]. Cambridge: Cambridge University Press, 2003.
  • 8Jung A. The classification of continuous domains [C]// IEEE Computer Society: Logic in Computer Science, 1990.
  • 9Schr6der M, Simpson A. Two preservation results for countable products of sequential spaces [J]. Mathematical Structure in Computer Science, 2007, 17: 12.
  • 10原雅燕,寇辉.关于函数空间的超连续性[J].数学年刊(A辑),2010,31(5):571-578. 被引量:4

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部