期刊文献+

基于文本分析的在线课程画像研究 被引量:1

Research on Online Course Portrait Based on Text Analysis
下载PDF
导出
摘要 [目的/意义]在“互联网+教育”的时代,网络课程丰富,类型众多,学习者难以快速找到适合的在线课程。传统在线课程简介无法提供适配性引导,而课程画像能描述课程整体定义,满足学习者差异化课程适配需求。[方法/过程]基于文本分析建立相关语言模型,构建在线课程画像。以学习者在线评论文本作为数据集,从课程基本信息、联合主题模型、情感判别三个维度构建课程画像的概念模型。联合主题模型先通过基于词向量的Word2Vec算法计算词语之间的相关性,构建初始相似词库;接下来结合K-means文本聚类算法从两个维度提取评论主题;最后利用ROST_CM6软件进行评论文本情感判别并解析语义网络,数据可视化后得到课程画像。[结果/结论]最终画像能清晰呈现学习者视角的课程描述,促进整体学习效率。 [Purpose/significance]In the era of“Internet+Education”,online courses are rich and diverse,and it is difficult for learners to quickly find suitable online courses.While the traditional online course introduction cannot provide adaptive guidance,the course portrait can describe the overall definition of the course and meet the needs of learners’differentiated course adaptation.[Method/process]Based on text analysis,this paper establishes relevant language models and constructs the online course portrait.This paper takes the learners’online review text as the data set,and constructs the conceptual model of the course portrait from three dimensions:the basic information of the course,the joint topic model and the emotion discrimination.The joint topic model first calculates the correlation between words through the Word2Vec algorithm based on word vector,and constructs the initial similar lexicon;next,combined with the K-means text clustering algorithm,the comment topic is extracted from two dimensions;finally,ROST_CM6 software is used to judge the sentiment of the comment text and analyze the semantic network.After data visualization,the course portrait is obtained.[Result/conclusion]The final portrait can clearly present the course description from the learner’s perspective and promote the overall learning efficiency.
作者 龚雪敏 罗凌 郭育研 杨露 Gong Xuemin;Luo Ling;Guo Yuyan;Yang Lu(College of Computer and Information Science,Chongqing Normal University,Chongqing 401331)
出处 《情报探索》 2024年第6期64-71,共8页 Information Research
基金 重庆市高等教育学会“新工科背景下程序设计类课程教学创新与课程数字化实践研究”(项目编号:cqgj2305B) 2023年度重庆师范大学基础教育研究专项项目“基于特征融合的师生互动行为模型构建及应用研究”(项目编号:23XJY03) 2022年重庆师范大学智慧教育研究院专项课题“基于学习者画像的个性化推荐系统构建”(项目编号:YZH22007)成果之一。
关键词 课程画像 联合主题模型 在线课程 K均值聚类算法 course portrait joint topic model online course K-mean clustering algorithm
  • 相关文献

参考文献9

二级参考文献104

  • 1Meisel F, Bierwirth C. Heuristics for the integration of crane productivity in the berth allocation problem [J]. Transportation Research Part E: Transportation Review, 2009, 45 (1): 196-209.
  • 2Imai A, Chen H C, Nishimura E, et al. The simulta- neous berth and quay crane allocation problem [J]. Transportation Research Part E, 2008, 44 (5): 900- 920.
  • 3Liang C, Huang Y, Yang Y. A quay crane dynamic scheduling problem by hybrid evolutionary algorithm for berth allocation planning [J]. Computers and In- dustrial Engineering, 2008, 56 (3): 1021-1028.
  • 4蔡芸,孙国正.同时求解泊位分配及岸桥调度问题的仿真优化方法[C]//北京交通大学.全国博士生学术论坛论文集.北京:人民交通出版社,2005:542-546.
  • 5Nishimura E, Imai A, Papadimitriou S. Berth alloca- tion planning in the public berth system by genetic al- gorithms [J]. European Journal of Operation Research, 2001, 131(2): 282-292.
  • 6Frank Meisel, Christian Bierwirth. A survey of berth allocation and quay crane scheduling problems in container terminals[ J]. European Journal of Operational Research, 2010, (202) : 615- 627.
  • 7Akio Imai, Etsuko Nishimura, Stratos Papadimitriou. The dynamic berth allocation problem for a container port[ J]. Transpor- tation Research Part E, 2001, (35) : 401-417.
  • 8Akio Imai, Etsuko Nishimura, Stratos Papadimitriou. Berth allocation with service priority[ J]. Transportation Research Part B, 2003, (37) : 437-457.
  • 9Akio Imai, Etsuko Nishimura, Masahiro Hattori, Stratos Papadimitriou. Berth allocation at indented berths for mega-container- ships[ J]. European Journal of Operational Research, 2007, (179) : 579-593.
  • 10Akio Imai, Etsuko Nishimura, Stratos Papadimitriou. Berthing ships at a multi-user container terminal with a limited quay ca- pacity[ J ]. Transportation Research Part E, 2008, (44) : 136-151.

共引文献76

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部