摘要
针对复杂背景下的红外小目标检测,在非对称时空正则化约束的非凸张量低秩估计算法基础上,提出了一种新的核范数估计方法代替原算法中的估计方法。提出基于结构张量与多结构元顶帽(Top-Hat)滤波的自适应权重张量对目标张量进行约束,增强目标张量稀疏性的同时抑制其中残存的强边缘结构。实验结果表明,所提改进算法能够更好地消除图像中强边缘结构对检测结果的影响,在保证检测率的情况下,较原算法具有更低的虚警率。
Aiming at infrared dim and small targets detection in complex background,a new kernel norm estimation method was proposed based on the non-convex tensor low-rank approximation algorithm with asymmetric spatial-temporal total variation regularization,replacing the original estimation method in the algorithm.An adaptive weight tensor based on structure tensor and multi-structure element Top-Hat filtering was proposed to constrain the target tensor,which had enhanced the sparsity and suppressed the remaining strong edge structures of the target tensor.Experimental results show that the proposed improved algorithm can better eliminate the influence of strong edge structure on the detection results,and has a lower false alarm rate than the original algorithm under the condition of ensuring the detection rate.
作者
胡亮
杨德贵
赵党军
张俊超
HU Liang;YANG Degui;ZHAO Dangjun;ZHANG Junchao(School of Automation,Central South University,Changsha 410083,China)
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2024年第3期180-194,共15页
Journal of National University of Defense Technology
基金
国家自然科学基金资助项目(62171475,62105372)。
关键词
红外小目标检测
张量恢复
张量核范数
多结构元Top-Hat滤波
infrared small target detection
tensor recovery
tensor nuclear norm
multi-structure element Top-Hat filtering