期刊文献+

THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM

下载PDF
导出
摘要 We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach.We first show the global wellposedness in the Sobolev space H^(2)(R^(3)) for solutions near equilibrium through iterated energy-type bounds and a continuity argument.We then prove the global well-posedness in the critical Besov space B^(3/2)_(2,1) by showing that the linearized operator is a contraction mapping under the right circumstances.
作者 韩斌 赖宁安 Andrei TARFULEA Bin HAN;Ningan LAI;Andrei TARFULEA;Corresponding author:(Department of Mathematics,Hangzhou Dianzi University,Hangzhou,310018,China;School of Mathematical Sciences,Zhejiang Normal University,Jinhua,321004,China;Department of Mathematics,Louisiana State University,Baton Rouge,70803,USA)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期865-886,共22页 数学物理学报(B辑英文版)
基金 partially supported by the Zhejiang Province Science Fund(LY21A010009) partially supported by the National Science Foundation of China(12271487,12171097) partially supported by the National Science Foundation(DMS-2012333,DMS-2108209)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部