摘要
Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,the stress-strain-time characteristics of soft soils were illustrated by consolidation-creep tests based on a typical engineering case.An extended Koppejan model was developed and then embedded in a finite element(FE)model via a user-material subroutine(UMAT).Based on the validated FE model,the time-dependent deformation mechanism of the pile foundation was revealed,and the preventive effect of applying micropiles and stress-release holes to control the deviation was investigated.The results show that the calculated maximum lateral displacement of the cap differs from the measured one by 6.5%,indicating that the derived extended Koppejan model reproduced the deviation process of the bridge cap-pile foundation with time.The additional load acting on the pile side caused by soil lateral deformation was mainly concentrated within the soft soil layer and increased with the increase in load duration.Compared with t=3 d(where t is surcharge time),the maximum lateral additional pressure acting on Pile 2#increased by approximately 47.0%at t=224 d.For bridge pile foundation deviation in deep soft soils,stress-release holes can provide better prevention compared to micropiles and are therefore recommended.
基金
supported by the Science and Technology Research Project of Jiangxi Education Department(Nos.GJJ2201509,GJJ2201501)
the National Natural Science Foundation of China(Nos.51878671,51969018,52378344)
the Natural Science Foundation of Jiangxi Province(No.20224BAB204076)
the Young Scientific and Technological Talents Sponsorship Project in Ganpo Juncai Support Program(No.2023QT08).