期刊文献+

Zn_(3)(As_(1-x)P_(x))_(2)纳米结构制备及光谱特性研究

reparation and Spectroscopic Properties of Zn_(3)(As_(1-x)P_(x))_(2) Nanostructures
下载PDF
导出
摘要 Zn_(3)As_(2)与Zn_(3)P_(2)具有相同的伪立方晶格结构,它们具有较高的电子迁移率、较窄的直接带隙和良好的空气稳定性,在光电器件领域呈现出广泛的应用前景。目前关于Zn_(3)As2-Zn_(3)P_(2)固溶体纳米结构的研究相对较少,采用高气压烧结技术得到Zn_(3)(As_(1-x)P_(x))_(2)(x=0、0.05、0.1)母合金,再利用化学气相沉积方法合成出多种形态的Zn_(3)(As_(1-x)P_(x))_(2)纳米结构,包括宏观尺寸的纳米带(长度3~10 mm;宽度1~4 mm;厚度约20μm)、纳米帆、纳米棒及纳米银簪等。系统的研究了P掺杂对相组成、元素含量、微结构以及光谱特性的影响。X射线衍射(XRD)结果表明,Zn_(3)(As_(1-x)P_(x))_(2)宏观纳米带样品的主相为α′相,随着P掺杂含量的增加,(224)衍射峰向右发生偏移,表明晶格常数减小。电子能谱分析显示P理论值(光致发光光谱)掺杂含量值x=0.05和x=0.1的Zn_(3)(As_(1-x)P_(x))_(2)母合金纳米带中P的实际含量分别为x=0.026及x=0.062。微结构分析表明,Zn_(3)As_(2)宏观纳米带的生长模式为沿〈221〉晶面菱形层状生长,P掺杂使纳米带的宏观尺寸减小,生长模式由菱形层状生长转变为纳米颗粒堆积层状生长。纳米带样品的拉曼光谱在79、97、198、320、428和1107 cm^(-1)出现特征峰,P掺杂导致拉曼光谱中1107 cm^(-1)特征峰发生蓝移,傅里叶红外光谱(FTIR)中1101和1599 cm^(-1)特征峰与PL谱中的300、422和635 nm特征峰也发生蓝移。Zn_(3)As_(2)与Zn_(3)(As_(0.974)P_(0.026))_(2)纳米带光电流与电压的线性关系良好,存在较好的欧姆特性,P掺杂后的Zn_(3)(As_(0.974)P_(0.026))2纳米带在900 nm条件下的光响应最为敏感。 Zn_(3)As_(2) and Zn_(3)P_(2) have the same pseudo-cubic lattice structure and present a wide range of application prospects in the field of optoelectronic devices because of their high electron mobility,narrow direct band gaps,and good air stability.At present,there is relatively little research on the nanostructure of Zn_(3)As_(2)-Zn_(3)P_(2) solid solution,and Zn_(3)(As_(1-x)P_(x))_(2)(x=0,0.05,0.1)master alloys were obtained by high-pressure sintering technology,and then a variety of Zn_(3)(As_(1-x)P_(x))_(2) nanostructures are synthesized by chemical vapor deposition,including macro-sized nanoribbons(Length 3~10 mm;Width 1~4 mm;Thickness~20μm),nano sails,nanorods and nano silver hairpins.The effect of P doping on phase composition,element content,microstructure,and spectral characteristics was systematically investigated.XRD results showed that the main phase of Zn_(3)(As_(1-x)P_(x))_(2) macroscopic nanoribbon samples wasα′phase.With the increase of P doping contents,the(224)diffraction peak shifted to the right,indicating a decrease in the lattice constant.Electron spectroscopy analysis showed that the actual content of P in these nanoribbons corresponding to x=0.05 and x=0.1 Zn_(3)(As_(1-x)P_(x))_(2) master alloys was x=0.026 and x=0.062,respectively.The microstructure analysis showed that the growth mode of Zn_(3)As_(2) macroscopic nanoribbons was along the〈221〉crystal face rhombus-shaped layer-like growth and that P doping led to a reduction in the macroscopic size of the nanoribbons,accompanied by growth mode change from rhombus-shaped layered growth to nanoparticle stacked layered growth.Raman spectra of the nanoribbon samples showed characteristic peaks at 79,97,198,320,428 and 1107 cm^(-1).P doping led to a blue shift of 1107 cm^(-1)characteristic peaks in Raman spectra,and 1101 and 1599 cm^(-1)characteristic peaks in Fourier infrared spectroscopy(FTIR),and 300,422,and 635 nm characteristic peaks in PL spectra were also blue-shifted.The linear relationship between photocurrent and voltage of Zn_(3)As_(2) and Zn_(3)(As_(0.974)P_(0.026))_(2) nanoribbons indicate good ohmic characteristics,and the photoresponse of Zn_(3)(As_(0.974)P_(0.026))_(2) nanoribbons after P doping shows the highest sensitivity under 900 nm conditions.
作者 王浩 孙乃坤 庞超 王志帅 陈上峰 李武 田辉 岱钦 WANG Hao;SUN Nai-kun;PANG Chao;WANG Zhi-shuai;CHEN Shang-feng;LI Wu;TIAN Hui;DAI Qin(School of Science,Shenyang Ligong University,Shenyang 110159,China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1934-1939,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(52171187)资助。
关键词 Zn_(3)(As_(1-x)P_(x))_(2) Zn_(3)As_(2) 纳米带 固溶体 Zn_(3)(As_(1-x)P_(x))_(2) Zn_(3)As_(2) Nanoribbon Solid solution
  • 相关文献

参考文献1

二级参考文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部